
Thank you for using eradoc, a platform to publish electronic copies of the Rothamsted Documents. Your requested document has been scanned from original documents. If you find this document is not readible, or you suspect there are some problems, please let us know and we will correct that.

Yields of the Field Experiments 1875

Full Table of Content

Experiments on Turnips; Barn Field

Rothamsted Research

Rothamsted Research (1876) *Experiments on Turnips; Barn Field ;* Yields Of The Field Experiments 1875, pp 7 - 7 - **DOI:** https://doi.org/10.23637/ERADOC-1-239

(7)

the garden border, on a portion of which clover had been grown the garden border, on a portion of which clover had been grown successfully since 1854, as above referred to. In April 1868 clover was sown over the whole of these small plots, and on some other portions of the land not so treated; but the plant for the most part died off during the following winter.

In April 1869 the same portions were re-sown, small quantities of clover were cut in September of that year, but the plant

again died off in the winter.

In April 1870 Clover was sown over the whole of the experimental land, this time in conjunction with Barley; but on those portions which had also been sown in 1868 and 1869 the plant again died off during the winter and early spring; whilst from those which had not been sown in 1868 and 1869 two small cuttings were taken in 1871. In the spring of 1872, the plant being then almost entirely gone, the land was ploughed up. It was again ploughed in July 1872, and in March 1873; the intention being to sow some other Leguminous crop; but owing to the wetness and lateness of the season this was not done; the land was again left fallow, and re-ploughed in the beginning of June and the end of July (1873). On May 4, 1874, the land was again ploughed, prepared for sowing, and sown with Red was again plongued, prepared for sowing, and sown with hed Clover seed, May 5, without manure. The plant came up well, and was very forward in September, when the flowering stems were cut down but left on the land. During the winter and early spring the plant on those portions from which cuttings had been taken in 1871 almost entirely failed; whilst on those from which none had been taken since 1869, a fair plant remains.

In the spring of 1871 the small plots in the field were again re-sown, and those of the garden-soil were entirely enclosed, both around and above, by galvanised wire netting. Small cuttings were taken from these small beds in July 1872, and (excepting from the garden-soil plots, which had yielded considerably more than the others in 1872) larger cuttings were taken in July 1873. The produce was the largest where potased and nitrate of soda were employed, and where they were applied in the largest quantity, and at the greatest depths. In April 1874 there was still some healthy plant on all the plots, but it was considered to be too irregular to preserve. It was, therefore, dug in. The artificially-manured plots were remanured as before, but only to the depth of 9 inches, and seed was sown as before, but only to the depth of 9 inches, and seed was sown on May 4th, July 6th, and October 22nd; each time the plant coming up well, but subsequently dying off. On the Garden soil plots, the plant from the first sowing (May 4), for the most part stood; requiring only to be made good here and there on July 6; and in September small cuttings were taken. In May, 1875, the plant was entirely gone on the artificiallymanured plots, which were then dug up, and prepared for resowing. On the garden soil plots, though the rows were imperfect, some healthy plants still remain, which are therefore left. More small plots were arranged in the spring of 1874; on which the manures were dug in, at the various depths, on May 11th to 14th, and the seed sown on May 16th. On these

new plots, with one or two exceptions, a good plant still remains (May 1875).

The general result of the experiments in the field has beenthat neither organic matter rich in carbon as well as other constituents, nor ammonia-salts, nor nitrate of soda, nor mineral constituents, nor a complex mixture, supplied as manure, availed to restore the clover-yielding capabilities of the land; though, where some of these were applied in large quantity, and at considerable depths, the result was better than when they were used in only moderate quantities and applied only on the surface.

On the other hand, it is clear that the garden-soil has supplied the conditions under which clover can be grown year after

year on the same land for many years in succession.

The results obtained on the garden-soil seem to show that what is called "clover-sickness," cannot be due to the injurious influence of excreted matters upon the immediately succeeding crop.

That Clover frequently fails coincidently with injury from

parasitic plants, or insects, cannot be disputed; but it may be doubted whether such injury should be reckoned as the cause, or merely the concomitant and an aggravation, of the failing condition.

The results of the experiments seem, therefore, to exclude the supposition that the primary cause of failure is either destruction by parasitic plants or insects, injury from excreted matters, or the shade of a corn-crop, and to indicate that it must be looked for in exhaustion of the soil. Still there remain several open questions. Is it exhaustion of certain organic matters rich in carbon, of nitrogenous food, or of mineral constituents? Again: is there an absolute deficiency in the soil of some of the substances in question, or only an unfavourable condition of combination, or, so to speak, of soil-digestion of them, for the requirements of Leguminous plants? Or, is there only an unfavourable distribution of them within the soil, considered in relation to the extent and character of the root-range of the crop?

These various suggestions cannot be further considered within the limits of this brief notice, which may be concluded by the following quotation from Rothamsted papers on the subject ('Journal Royal Agricultural Society of England,' vol. xxi. Part I. p. 178; and 'Journal Royal Horticultural Society of London,' vol. iii. p. 86, 1872).

"When land is not what is called 'clover-sick,' the crop of "When land is not what is called 'clover-sick, the crop of clover may frequently be increased by top-dressings of manure containing potass and superphosphate of lime; but the high price of salts of potass, and the uncertainty of the action of manures upon the crop, render the application of artificial manures for clover a practice of doubtful economy.

"When the land is what is called 'clover-sick,' none of the

ordinary manures, whether 'artificial' or natural, can be relied

upon to secure a crop.

"So far as our present knowledge goes, the only means of insuring a good crop of Red Clover is to allow some years to elapse before repeating the crop upon the same land."

BARN FIELD.

EXPERIMENTS ON THE GROWTH OF ROOT-CROPS.

EXPERIMENTS with TURNIPS were commenced in 1843. Eight acres, divided into numerous plots, were set apart for the purpose; and the crop was grown for ten consecutive years on the same land ("Norfolk Whites" 1843-1848, and "Swedes" 1849-1852); on some plots without manure, and on others with different descriptions of manure. Barley was then grown for three consecutive seasons (1853-1855) without manure, in order to test the comparative corn-growing condition of the different plots, and also to equalize their condition, as far as possible, by the exhaustion of some of the most active and immediately available constituents supplied by the previous manuring. A new series of experiments with Swedes was then arranged, having regard to the character of the manures previously applied on the different plots, and to the results previously obtained. This second series was commenced in 1856, and continued for 15 years—namely, to 1870 inclusive.

It is impossible adequately to state the bearing of the results in a few words, but the following are some of the most characteristic indications :-

1. Without manure of any kind, the produce of roots was reduced in a few years to a few cwts. per acre; but the diminutive plants (both root and leaf) contained a very unusually high

percentage of nitrogen.
2. Of "mineral" co 2. Of "mineral" constituents, phosphoric acid (in the form of superphosphate of lime) was by far the most effective manure; but, when this manure is used alone, the immediately available

nitrogen of the soil is rapidly exhausted.

3. Really large crops of turnips can only be obtained when the soil supplies a liberal amount of nitrogenous (and carbonaceous?) matter, as well as mineral constituents; and when they are already available within the soil, or are supplied in the form of farmyard manure, rape-cake, Peruvian guano, ammonia-salts, &c., the rapidity of growth, and the amount of the crop, are greatly increased by the use of superphosphate of lime applied near to the seed.

The land is now devoted to experiments with sugar-beet; for

particulars of which see next page.