Thank you for using eradoc, a platform to publish electronic copies of the Rothamsted Documents. Your requested document has been scanned from original documents. If you find this document is not readible, or you suspect there are some problems, please let us know and we will correct that. # Memoranda of the Field Experiments at Rothamsted, May 1873 Full Table of Content ## **Experiments on Clover; Hoos Field** ### **Rothamsted Research** Rothamsted Research (1874) Experiments on Clover; Hoos Field; Memoranda Of The Field Experiments At Rothamsted, May 1873, pp 6 - 7 - DOI: https://doi.org/10.23637/ERADOC-1-237 (6) ## EXPERIMENTS ON THE GROWTH OF LEGUMINOUS CROPS. I .- BEANS, PEAS, AND TARES-GEESCROFT FIELD. Experiments on the growth of Leguminous corn-crops (beans, peas, and tares), with different descriptions of manure, were commenced in 1847, about nine acres being devoted to the purpose. Experiments with Beans were continued for thirteen consecutive seasons, to 1859 inclusive; but, during the later years, the crop fell off very much, and the land became very foul. In 1860 the land was fallowed. In 1861 a crop of wheat, without manure, was taken. In 1862 beans were again sown, but with some variation in the manuring. In 1863 the land was fallowed. In 1864, 5, 6, 7, 8, and 9, beans were grown, with much the same manures on the same plots, each year, as in 1862. In the winter of 1869-70, 5000 lbs. of fresh burnt lime were applied per acre, over all the plots. In 1870 beans were grown with the same manures on the respective plots as in 1864-69. In October, 1870, winter beans were sown (without manure), but the plants were to so great an extent destroyed by the severe weather which followed, that, in April 1871, the crop was ploughed up, and the land left fallow. During the winter and early spring of 1871-2, the land was so wet that it could not be prepared in time for sowing. It was therefore left fallow for 1872, at the end of May subsoiled to a depth of about 12 inches, and re-ploughed in July. The winter and early spring of 1872-3 were also so extremely wet, that it was again impossible to prepare the land in time for sowing; it was, however, ploughed up towards the end of March, and is again left fallow. The general result of the experiments with Beans has been, that mineral constituents used as manure (more particularly potass), increased the produce very much during the early years; and, to a certain extent, afterwards, whenever the season was favourable for the crop. Ammonia-salts, on the other hand, produced very little effect; notwithstanding that a Leguminous crop contains two, three, or more times as much nitrogen as a Graminaceous one grown under similar conditions as to soil, &c. Nitrate of soda has, however, produced marked effects. But Leguminous crops grown too frequently on the same land seem to be peculiarly subject to disease, which no conditions of manuring that we have hitherto tried seem to obviate. Experiments with Peas were soon abandoned, owing to the difficulty of keeping the land free from weeds, and an alternation of Beans and Wheat was substituted; the beans being manured much as in the experiments with the same crop grown continuously as above described. But the wetness of the winter of 1871-72 prevented the sowing of the Beans for the season of 1872; and again the wetness of the autumn and winter of 1872-3 prevented the sowing of the wheat until April 4, 1873, when Nursery wheat was put in. In alternating Wheat with Beans, the remarkable result was obtained, that nearly as much wheat, and nearly as much nitrogen, were yielded in eight crops of wheat in alternation with the highly nitrogenous beans, as in sixteen crops of wheat grown consecutively without manure in another field, and also nearly as much as were obtained in a third field in eight crops alternated with bare fallow. Experiments with Tares, like those with Peas, were soon abandoned, and for the same reasons. Beans were at first substituted, with some variation in the description of the manures employed; but this experiment has likewise been abandoned for some years. II.—RED CLOVER (Trifolium pratense)—Hoos Field. EXPERIMENTS on the growth of Clover, with many different descriptions of manure, were commenced in 1849, and, with the occasional interposition of a corn-crop, or fallow, have been continued up to the present time. As with other Leguminous crops, the result was, that mineral constituents applied as manure (particularly potass) considerably increased the early crops; whereas ammonia-salts had little or no beneficial effect, and were sometimes injurious. It may be added that, even up to the present time, the beneficial effects of long previous applications of potass are apparent whenever there is any growth at all. To go a little more into detail :- In the first year, 1849, the crops were throughout very heavy; especially with mineral, and without nitrogenous manure. In autumn 1849 wheat was sown, and in spring 1850 Red Clover. In 1851 small cuttings were taken; and in 1852, though the crops were not heavy, there was by no means a failure. Since that time, however, all attempts to grow clover year after year on the same land have failed to give anything like a full crop, or a plant which would stand the usual time on the ground. Small cuttings were obtained in the autumns of 1855 and 1859 from seed sown in the spring of those years, and small but rather heavier cuttings in June and August 1865, from seed sown in 1864. On two occasions (1851 and 1854), heavy dressings of Farmyard dung were applied to some of the plots; and in 1854 some received a dressing of 20 tons of dung, and 5000 lbs. of lime, per acre. On some portions of the land Clover-seed has been sown 10 times during the 23 years, and more frequently alone than with a corn-crop; but in 7 out of the last 8 trials the plant has died off in the winter and spring succeeding the sowing the seed. In view of these failures in the field, it is a fact of much interest, that in 1854 Red Clover was sown in a garden, only a few hundred yards distant from the experimental field, on soil which has been under ordinary garden cultivation for probably two or three centuries, and it has every year since shown very luxuriant growth; and, after re-sowing 4 times during the period, namely, in 1860, 1865, 1868, and 1871, there is at the present time (spring 1873) a luxuriant plant on the ground. In reference to the field experiments, it may be added that, in 1864, a portion of the land was trenched 2 feet deep, and one-third of the manure was mixed with the layer from 24 to 16 inches, one-third from 16 to 8 inches, and the remainder from 8 inches upwards. Owing to the characters of the season, the mechanical condition of the land was at first very unfavourable after this treatment; but, although many years have now elapsed, and the excess of constituents supplied was in some cases considerable, the plant has died off as completely on these plots as elsewhere. Again, in the winter of 1867-8 small portions of the experimental land were dug, some to the depth of 9 inches, some to the depth of 18, some to the depth of 27, and some to the depth of 36 inches, and sown to the respective depths with different mixtures; supplying in some cases very large amounts of potass, soda, lime, magnesia, phosphoric acid, sulphuric acid, nitrate of soda, &c. From other similar sized plots, the soil was removed to the depths of 9, 18, and 27 inches respectively, and replaced by soil taken at the same depths from the garden border, on a portion of which clover had been grown successfully since 1854, as above referred to. In April 1868 clover was sown over the whole of these small plots, and on some other portions of the land not so treated; but the plant for the most part died off during the following winter. In April 1869 the same portions were re-sown, small quan- (7) tities of clover were cut in September of that year, but the plant again died off in the winter. In April 1870 Clover was sown over the whole of the experimental land, this time in conjunction with Barley; but on those portions which had also been sown in 1868 and 1869 the plant again died off during the winter and early spring; whilst from those which had not been sown in 1868 and 1869 two small cuttings were taken in 1871. In the spring of 1872, the plant being then almost entirely gone, the land was ploughed up. It was again ploughed in July 1872, and in March 1873; the intention being to sow some other leguminous crop; but owing to the wetness and lateness of the season this has not been done, and the land again lays fallow. In the spring of 1871 the small plots in the field were again re-sown, and those of the garden-soil were entirely enclosed, both around and above, by galvanised wire netting. Small cuttings were taken from these small beds in July 1872; and at this time (May 1873) there is a fair plant on most of them, but less on those with garden soil than on several of the others from which less was taken last year. The general result of the experiments in the field is—that neither organic matter rich in carbon as well as other constituents, nor ammonia-salts, nor nitrate of soda, nor mineral constituents, nor a complex mixture, supplied as manure, whether at the surface or at a considerable depth, has hitherto availed to restore the clover-yielding capabilities of the land. On the other hand, it is clear that the garden-soil has supplied the conditions under which clover can be grown year after year on the same land for many years in succession. The results obtained on the garden-soil seem to show that what is called "clover-sickness," cannot be due to the injurious influence of excreted matters upon the immediately succeeding crop. That Clover frequently fails coincidently with injury from parasitic plants, or insects, cannot be disputed; but it may be doubted whether such injury should be reckoned as the cause, or merely the concomitant and an aggravation, of the failing condition. The results of the experiments seem, therefore, to exclude the supposition that the primary cause of failure is either destruction by parasitic plants or insects, injury from excreted matters, or the shade of a corn-crop, and to indicate that it must be looked for in exhaustion of the soil. Still there remain several open questions. Is it exhaustion of certain organic matters rich in carbon, of nitrogenous food, or of mineral constituents? Again: is there an absolute deficiency in the soil of some of the substances in question, or only an unfavourable condition of combination, or, so to speak, of soil-digestion of them, for the requirements of Leguminous plants? Or is there only an unfavourable distribution of them within the soil, considered in relation to the extent and character of the root-range of the crop? These various suggestions cannot be further considered within the limits of this brief notice, which may be concluded by the following quotation from Rothamsted papers on the subject ('Journal Royal Agricultural Society of England,' vol. xxi. Part I. p. 178; and 'Journal Royal Horticultural Society of London, vol. iii. p. 86, 1872). "When land is not what is called 'clover-sick,' the crop of clover may frequently be increased by top-dressings of manure containing potass and superphosphate of lime; but the high price of salts of potass, and the uncertainty of the action of manures upon the crop, render the application of artificial manures for clover a practice of doubtful economy. "When the land is what is called 'clover-sick,' none of the "When the land is what is called 'clover-sick,' none of the ordinary manures, whether 'artificial' or natural, can be relied upon to secure a crop. "So far as our present knowledge goes, the only means of insuring a good crop of Red Clover is to allow some years to elapse before repeating the crop upon the same land." #### BARN FIELD. #### EXPERIMENTS ON THE GROWTH OF ROOT-CROPS. EXPERIMENTS with Turnips were commenced in 1843. Eight acres, divided into numerous plots, were set apart for the purpose; and the crop was grown for ten consecutive years on the same land ("Norfolk Whites" 1843-1848, and "Swedes" 1849-1852); on some plots without manure, and on others with different descriptions of manure. Barley was then grown for three consecutive seasons (1853-1855) without manure, in order to test the comparative corn-growing condition of the different plots, and also to equalize their condition, as far as possible, by the exhaustion of some of the most active and immediately available constituents supplied by the previous manuring. A new series of experiments with Swedes was then arranged, having regard to the character of the manures previously applied on the different plots, and to the results previously obtained. This second series was commenced in 1856, and continued for 15 years—namely, to 1870 inclusive. It is impossible adequately to state the bearing of the results in a few words, but the following are some of the most characteristic indications:— 1. Without manure of any kind, the produce of roots was reduced in a few years to a few cwts. per acre; but the diminutive plants (both root and leaf) contained a very unusually high percentage of pitrogen. percentage of nitrogen. 2. Of "mineral" constituents, phosphoric acid (in the form of superphosphate of lime) was by far the most effective manure; but, when this manure is used alone, the immediately available nitrogen of the soil is rapidly exhausted. 3. Really large crops of turnips can only be obtained when the soil supplies a liberal amount of both carbonaceous and nitrogenous matter (as well as mineral constituents); and when they are already available within the soil, or are supplied in the form of farmyard manure, rape-cake, Peruvian guano, ammoniasalts, &c., the rapidity of growth and the amount of the crop are greatly increased by the use of superphosphate of lime applied near to the seed. The land is now devoted to experiments with sugar-beet; for particulars of which see next page.