Thank you for using eradoc, a platform to publish electronic copies of the Rothamsted Documents. Your requested document has been scanned from original documents. If you find this document is not readible, or you suspect there are some problems, please let us know and we will correct that.

Rothamsted Experimental Station Report for 1986

Full Table of Content

Subject Index

Rothamsted Research

Rothamsted Research (1987) *Subject Index*; Rothamsted Experimental Station Report For 1986, pp 327 - 336 - **DOI:** https://doi.org/10.23637/ERADOC-1-27

SUBJECT INDEX

The papers in Part 2 have not been indexed.

```
Abscisic acid, effect of on wheat roots, 153
    Acadospora laevis, 141
Acetohydroxyacid synthase, 128
Acetohydroxybutyrate, 128
Acetolactate, 128
Acetylcholinesterase, 98–99
Acid rain, 156, 205
Acetylcholinesterase, 98–99
Acid rain, 156, 205
Acid soils,
biomass C in, 150–151
nutrient reserves in, 155
on Park Grass and Geescroft, 156
Acid sulphate soils, 198, 201
Acridine orange, 153
Actinomycetes, soil, 140
Acute paralysis virus, of honeybees, 19, 92
Acyrthosiphon pisum, 89–90, 116
ADAS, 73–76, 80, 86, 102, 196, 199
Adenylate energy charge measurements in soil, 150
Adès distributions, 73
Aerobiology, 51–52, 122–123
AFRC, 11–12, 78, 85, 122, 126, 211
Institute for Engineering Research, 162
Winter Wheat Model, 50–51
AGRENET, 70, 80, 203
Agricultural Development and Advisory Service,
See: ADAS
Agricultural Genetics Company, the, 126, 145
Agricultural Genetics Company, the, 126, 145
Agricultural Iand classification, 211
Agrobacterium rhizogenes, 130, 141
Agrobacterium tumefaciens, 132
Agropine, 141
Agviser, 86–87
Airborne allergens, 123
Airtorne microorganisms, 122–123
Ajuga chamaepitys, 99–100
Aldicarb,
as a nematicide, 104, 108, 109
       Aldicarb,
as a nematicide, 104, 108, 109
on sugar beet, 55, 56, 61–62, 64–66
N-alkylamides, 96–97
Allergens, airborne, 123
Allium porrum, See: Leek
Allolobophora caliginosa, 93
Allolobophora chlorotica, 93
Allolobophora longa, 93
Alnwick and Rothbury, soil survey of, 194–195
Alternaria, spp., 30, 115–116
Alternative crops, 15
Amides, insecticidal, 96–97
Amino acids,
biosynthesis of, 126, 128–129
in barley hordeins, 131
           Aldicarb,
                          in barley hordeins, 131
N-terminal, 127
See also: Lysine
         See also: Lysine
Ammonia, assimilation of, 126
β-amylase, 131–132
Anisotropic shrinkage, 161
Antibiotic resistance, in rhizobia, 143
Antibodies, 127, 129, 134
monoclonal, 119–120, 122
Antifeedants, 99–101
See also: Polygodial
Aphanomyces cochlioides, 56, 58–59
Aphelenchoides, 112–113
              Aphelenchoides, 112-113
Aphicides,
                            on sugar beet, 64-66
on wheat, 41, 154
resistance to, 19-20
```

```
Aphid commentary, 86
Aphidius ervi, 89–90
Aphidius ervi, 89–90
Aphidius rhopalosiphi, 89
Aphids,
alarm pheromone of, 101
black, 56
database for, 86
in suction traps, 86
infectivity with BYDV, 86–87, 89, 99
insecticide resistance in, 19, 29, 98–99
migrations of, 55, 85
on barley, 26
on peas, 115
on sugar beet, 55–56, 62, 64–66
parasitoids of, 89–90
population genetics, 88
predators of, 86, 90
sex pheromone of, 19, 100
surveys, 72
virus vectors, 64–66, 86–87, 89, 116, 120–121
Aphis, spp., 91
Aphis craccivora, 91
Aphis fabae, 56, 64, 87, 91
Aphis sambuci, 87
Apical development, in winter wheat, model for, 50–51
Apis mellifera, See: Honeybees
Apodemus sylvaticus, See: Fieldmice
Archaeological investigations, 164, 207
Argillic horizons, in Northumberland, 208
ARRS, 78
Artesian head, 159
Arthrobotrys irregularis, 106
Ascospores, 51
Aspartate kinase, 129
Aspergillus, spp., 123
Asthma, outbreak of in a sugar beet factory, 123
Atmospheric deposition, 156
Atomaria linearis, See: Pygmy beetle
ATP content, of soils, 150
Aureobasidium pullulanas, on oilseed rape, 30
Automatic data recording, of soil samples, 165
Avadex, See: Di-allate
Azamethiphos, resistance to, 99
```

```
Bacillus spp., 123
Badgers, density of, 210
Bakery, airborne allergens in, 123
Barley,
at Rothamsted, 42–43
development and tillering in, 23–24
disease control, 147
dispersal of fungal spores from, 122
effects of previous cropping, 25
factors limiting yield, 23–26, 146–147
fungal diseases of, 26, 116
growth and yield in, 24–25, 128–129
high lysine genes, 132, 133
hordeins of, 131–132
Igri, 42
Klaxon, 43
leaf area index, 24
leaf blotch on, 26
nitrogen in soil, 23
on Hoos, 42
```

Aphid bulletin, 86

Barley (contd)	Cadmium, concentrations of in soil, 93
Panda, 23–25, 42	Canker, See: Leptosphaeria maculans
phosphate on, 154–155 Pirate, 25, 42	Carbendazim, 106, 117-118
regeneration from immature embryos, 131	on barley, 42
Rhizoctonia solani from, 120-121	on beans, 104, 105 on cereals, 41
take-all on, 26, 118	Carbendazim plus maneb, 41
triadimenol+fuberidazole on, 25	Carbendazim+vinclozolin, 115
viruses of, 14, 15, 26, 42, 86–87, 89, 99, 119–120 volunteers, 42, 146	Carbofuran, 61, 104
See also: Barley yellow dwarf virus: Barley yellow	Carbon dioxide responses, in wheat, 47
mosaic virus; cereals: Ervsinhe graminis: Take-all	Carbosulfan 55, 61, 62
Barley yellow dwarf virus, 14, 15, 19, 26, 42, 119-120	Carbosulfan, 55, 61–62 2-carboxy-D-arabinitol-1-phosphate, 20–21, 127
apnid vectors of, 86–87, 89, 99	Carboxylation efficiency, in wheat, 49–50
Barley yellow mosaic virus, 119	Carboxylesterase, 98
Basidiomycetes, 140 Bayesian estimation, 76	Carrots, 176
'Baytan', See: Triadimenol	acetohydroxyacid synthase from, 128–129
BBC Domesday Project, 76	Catalase mutant, of barley, 128 Catmint, 100
Beans (Vicia faba),	Cattle, at Rothamsted, 45
benomyl on, 43	See also: Livestock
chlorothalonil on, 43 chocolate spot of, 43	Cell Biology Programme, 21
Minden, 43	Cell division and expansion, in winter wheat leaves, 49
nematodes on, 104	Cell Signalling and Passarition Pro-
rust on, 43	Cell Signalling and Recognition Programme, 133 Cementstone lowlands, soil survey in, 194–195
seed rate, 43	Centro Internacional de Agricultura Tropical, 143
yields, 43	Cereal seed proteins, See: Proteins
See also: Phaseolus vulgaris Beddgelert forest, 155	Cereals,
Bees, See: Honeybees	aphids on, 26
Beet cryptic virus, 121–122	at Broom's barn, 50, 66–67 at Rothamsted, 16, 41–43
Beet mild yellowing virus, 55–56, 65–66	at Woburn, 41–43
Beet necrotic yellow vein virus, 56	diseases of, 116-120
Beet western yellows virus, 115	fungicides on, 101-102, 117-118
Beet yellows, 65–66, See also: Virus yellows Beetles, as aphid predators, 90	yields, 164–165
Beetroot, 176	See also: Barley; Erysiphe graminis; Maize; Oats;
Behaviour-controlling chemicals, 99-100	Take-all; Wheat 'Cereals 86', 40
Bemisia tabaci, insecticide resistance in, 96	Ceutorhynchus assimilis, 29
Bendiocarb, 61–62	Chaetomium, spp., 140
Benfuracarb, 61 Benomyl 43, 115	Charcoal, effect on nematode hatching, 110–111
Benomyl, 43, 115 Benzyltriazoles, substituted, 102	Cheviot Hills, the, 194–195
Biochemical characterization, of nematodes, 112	Chloramphenical acetal transference 121 122
Biochemistry, of insecticide resistance, 98-99	Chloramphenicol acetyl transferase, 131–132 Chloridazon, 111
Biocontrol agents, 140	Chlorophyll, in wheat leaves, 49
Biological agents, to control nematodes, 105–107	Chlorothalonil, 43, 115
to control take-all, 118–119 Biomass, See: Soil biomass	Chlorsulfuron, damage to sugar beet caused by, 18, 54, 102-
Biomass carbon, in acid soils, 150-151	Chocolete spot of field bears San Bernei 6.4
Biosynthesis, of amino acids, 126, 128-129	Chocolate spot, of field beans, See: Botrytis fabae Chromosome stability, of regenerated potato plants, 130
Birds, in sugar beet fields, 54	Chymotrypsin inhibitors, 131
Bolting, control of, 53–54, 57	CIAT (Centro Internacional de Agricultura Tropical), 143
Boron uptake, 72 Boston and Spalding, soil survey of, 196–197	Circular dichroism spectroscopy, 133
Botrytis spp., 116	Cladosporium spp., 123
Botrytis cinerea, 30, 115	on oilseed rape, 30 Clay mineralogy, of Kenyan soils, 155
Botrytis fabae (chocolate spot), on beans, 43	Clay soils, cracking of, 161
Br tracer, to estimate nitrate leaching, 148	Cloning, of viruses, 121–122
Brachycaudatus helichrysi, 87, 91 Brassica cyst nematodes, 106–108	Clover,
Brimstone Experiment, the, 72, 159–160	mycorrhiza on, 141, 144
British Geological Survey, the, 205	nitrogen fixation by, 154
British Sugar, 49, 55, 56, 62, 75, 102	Cloves, Sumatra disease of, 122 Coffee, nematodes on, 112
British Sugar Specific Field Survey, 53–54	Cold-induced sweetening, in potato, 126, 129
Broadbalk, wheat on, 148, 153-154 Broom's Barn, 11, 14, 49, 56	Colombia, soil microbiology projects in, 143–144
cereals at, 50, 66-67	Commonwealth Mycological Institute, 51
farm, 66-67	Computer models, See: Models Computer programs, for soil survey, 203–204
long-term soil fertility experiment at, 60	See also: Models; names of individual programs
studies with pesticides at, 98–99	Computers,
sugar beet at, 48, 53–67	for soil survey, 195, 200, 203–205, 210
weather at, 54–55, 63, 326 wheat at, 50	graphics, 205
Brown foot rot, See: Fusarium spp.	instrumentation, 71
Brussels sprouts, 202	logging system for glasshouses, 135 simulation of leaching with, 149–150
Bulb onions, See: Onions	See also: Microcomputers; Statistical computing
Burning, of straw, 157 Bursaphelenchus xylophilus, 112	Conference Hall, the, 13
	Connectivity density, soil, 162
328	

CONSERVB, 160
Consultancy services, offered by Soil Survey, 205–207
Copper, in soils, 93, 154
Cornish-Bowden's formula, 73
Coulter counter, the, 49
Cracking, in clay soils, 161–162
Cranfield Institute of Technology, 14
CRIES geographical information system, 203–204
Crop experiments, statistical programs for, 73
Crop residues, oxygen demand by, 158
Crop rotation, for nematode control, 105
Crop sequences, effect on barley yields, 25
Crop suitability studies, 201–203
Crops, alternative, 15 CONSERVB, 160 Eisenia foetida, 93 Elastin, 133 Electrofusion, of potato protoplasts, 130
production of somatic hybrids of potato by, 21
Electrophoretic techniques, for nematode identification, 19
Electroporation techniques, 130 Electroparation techniques, 130
Electrostatic spraying systems, 104, 115
See also: Spraying systems
ELISA technique, the, 122
BYV identification by, 30, 65–66, 119–120
study of take-all with, 119
to monitor acute paralysis virus in honeybees, 92
Elytrigia elongata, 132
Elytrigia propries, 132 Crops, alternative, 15 Cross-resistance, 97 Elytrigia pontica, 132
EMP seed treatment, 58-59
England and Wales, soil map of, 193
Entomogenous fungi, for aphid control, 88-89
Entomophthora, 56, 64 Cushman-Barber model, 152 Cycloate, 111
Cylindrocarpon destructans, 107
Cyst nematodes, See: Nematodes
Cytokinin gene, the, 133 Entrophospora colombiana, 144
Enzyme-linked immunosorbant assay.
See: ELISA technique 'Dark earth', 164 Dark regulation, of ribulose bisphosphate carboxylation, 127 activity of in wheat leaves, 127 in barley mutants, 126, 128 in potato leaves, 127 Dasineura brassicae (pod midges), 29, 90-91 Databases, 14, 71, 86, 204, 210 Datatrieve, 71 of amino acid biosynthesis, 128–129 of ammonia assimilation, 129 Epson systems, 71, 74 Degradation, of triazoles in soil 102
Deltamethrin, housefly resistance to, 97
Demeton-S-methyl, as an aphicide on sugar beet, 64–65
Denitrification, nitrogen losses caused by, 148–149
Department of Trade and Industry, 156
Designs, statistical, 76
Devernalizing, of sugar beet seed, 58
Di-allate, effect on cyst nematode hatch, 111
Diethyl mercuric phosphate (EMP), 58–59
Diffraction, X-ray, of soils, 163
Diffractometer alignment, instabilities in, 163
Dimethoate, 104–105
Diquat, 37
Direct drilling,
compared with ploughing, 159–160
into stubble, 157
Dispersal, of fungal spores, 20, 51–52
Ditylenchus, 19, 112
Ditylenchus dipsaci, 104, 113
DNA, Degradation, of triazoles in soil 102 Epson systems, 71, 74
Ergosterol biosynthesis-inhibiting fungicides, 118
Erosion,
soil, 201, 208
wind, 197
Erynia neoaphidis, 88–89
Erysiphe betae, 62–64
Erysiphe graminis (barley mildew), 26, 35, 36, 42
on wheat, 36, 41
Escherichia coli, 123, 127
Estimation of variance, 76 Estimation, of variance, 76 Ethernet, 72 Exeter University, 209-210 Exmoor, soil survey in, 209
Expert system 'shell' for MLP, 79
Eyespot, See: Pseudocercosporella herpotrichoides Factors Limiting Yield experiments, 23–26, 42
Farm Research Ltd., 75
Farmers, consultancy services for, 15, 205–207
Farmlink, See: Prestel Farmlink
Farmyard manure, compared with sewage sludge, 17–18
Fastidious prokaryotes, 122
Feed Evaluation Unit Digestibility Program, 80
Fenland, soils of, 198
Fenpropimorph, 136
Fenvalerate, 95
Ferredoxin-glutamate synthase, 128
Fertilizer Manufacturers' Association, 75
Fertilizers, DNA, aphid, 99 extraction from cyst nematodes, 112–113 from beet cryptic virus, 121–122 homology, 122 sequences of genes, 127 sequencing, 77 transfer of, 130–132 DNA probes, for nematodes, 19 for Sym plasmids, 143 Ferridoxin-glutamate synthase, 128
Fertiliser Manufacturers' Association, 75
Fertilizers,

15N-labelled, 148
P and K, 151–152
survey of fertilizer practice, 75
water-soluble phosphate in, 154–155
See also: Nitrogen fertilizers; Phosphate; Potassium
Fibrous root system, of sugar beet, 60
Field beans, See: Beans
FIELD data entry program, 74, 80
Field Drainage Experimental Unit, 199
Field Experiments, 15, 23–37
Field mice, in sugar beet fields, 54
Financing, of research, 11–12
'Finger prints', of potato cyst nematodes, 112–113
Forestry, 155–156
Forestry Commission, the, 155
'Friends of Rothamsted', 15
Friskney, soil survey in, 175
Fungal carbohydrates, 142
Fungal competition, 141 for Sym plasmids, 143
Docking disorder, 54–56, 61–62
Domestic waste disposal, airborne microorganisms associated with, 122–123
Double ridges phase, in wheat, 51 Drainage, effect on nitrogen use, 148–149 in the Brimstone Experiment, 159–160 land, 170 to solve groundwater flow problem, 159 Drepanosiphum platanoides, 88 Drought, response of winter wheat to, 152 DSM, on sugar beet, 64-65 Durum wheat, 133 'Earthquake' deep-tine cultivar, 37
Earthworms, 93
as indicators of heavy metal bioavailability, 92
EEC Biomolecular Engineering Programme, 126 'Eelworm wool', 113 Efford Experimental Horticulture Station, 199 Egg-yolk colouring, 74-75

Haynaldia villosa, 132 Headlands, in beet fields, 59 Fungal diseases of cereals, 116-120 of lupins, 116 of sunflower, 115 Heavy metals, earthworms as indicators of bioavailability of, 93 in sewage sludge, 17 See also: Erysiphe graminis: Eyespot: Fusarium: Take-Helminthosporium solani, 121 Hematite, 163 Herbicides, Fungal spores, dispersal of, 20, 51-52 Fungi, mycorrhizal, 140–144 nematophagous, 105–107 spore dispersal, 122 wilt, 108–109 Fungicides, 35, 106 degradation of, in soil, 102 effects on take-all, 101–102, 117–118 on cereals, 117–118 on wheat, 154 resistance to, 117, 121 effect of residues on sugar beet, 17-18 effect on hatching of cyst nematodes, 111 for sugar beet, 54, 94 new, 21 sulphonylurea and imidazolinone, 129 Heterodera avenae, 106–107 Heterodera cruciferae, 106–108, 110 Heterodera goettingiana, 106
Heterodera schachtii (beet cyst nematode), 56, 107, 110–111
High molecular weight subunits, of glutenin, 132–133
High-resolution isoelectric focusing of nematode proteins, resistance to, 117, 121

See also: Names of individual chemicals used as fungicides 19
High-speed photography, 52
Home Grown Cereals Authority, the, 140
Honeybees (Apis mellifera),
acute paralysis virus in, 92
pheromones of, 92–93
queen recognition in, 92–93
Varroa jacobsoni on, 19, 92
Hordeins, of barley, 131–132
Hordeum spontaneum, plants regenerated Furathiocarb, 61–62
Fusarium spp., 118
in straw decomposition, 140
Fusarium avenaceum, 115–116 Fusarium oxysporum, 107 'Future with Rothamsted', 14 Gaeumannomyces graminis var. tritici, biological control of, 119 effects of various fungicides on, 101–102 See also: Take-all Hordeum spontaneum, plants regenerated from, 131 Hormone composition, of regenerated potato plants, 130 Horticultural crops, suitability of soils for, 170 Gangrene, on potato, 120 Host-endophyte relationships, in mycorrhiza, 140–141 Housefly (Musca domestica), knock-down resistance in, 96–99 Gas chromotography/mass spectrography, 127 Geescroft, 156 Generalized linear models, 76-77 Humber warplands, soil survey in, 208 Hydraulic conductivity, of soil, 158–160, 161, 208, 210 Hymexazol, on sugar beet, 58–59 Genes, CAT reporter genes, 131–132 manipulation of, 126 symbiotic, in *Rhizobium*, 142–143 transfer of, 129–130 See also: Mutants See also: Mutants
Genetic Manipulation, Advisory Committee on, 143
Genstat, 21, 71, 77–79, 203–204
GHOST computer program, 71
Glasshouses, 13, 94, 135
Gliadins, of wheat, 132–133
Globodera pallida, 105, 108–109, 112–113
Globus spp., 142
Glomus caledonium, 141
Glomus caledonium, 141
Glomus calegonium, 141 ICI Agviser, 14 ICRISAT (International Crops Research Institute for the Semi Arid Tropics), 143 Semi Arid Tropics), 143

IEF, 112

Imidazolinone herbicides, 129

Immunoassay, for resistance-conferring enzyme in Myzus persicae, 19 persicae, 19
monitoring of insecticide resistance by, 98–99
Immunospecific electron microscopy, 30, 120
'Infectivity Index', for barley yellow dwarf virus, 120
Inhibitor of CO₂ assimilation, 20
Inoculants, granular, 145
Inoculation, crop, 143–144
Insect database, 71
Insect traps, 85–88
Insecticidal amides, 96–97
Insecticides Glomus caleaonium, 141
Glomus clarum, 141
Glomus fasciculatum, 141
Glomus manihotis, 141, 144
Glomus mossae, 141
Glomus tenuis, 141
β-Glucuronidase, 133
Glutamate oxaloacetate transaminase, 88
Glutamate coxaloacetate transaminase, 88 Insecticides, aphid resistance to, 19, 96, 98–99, 116, 121 combination with pheromones, 101 Glutamate synthase, 128, 129 Glutamine synthetase, 128, 129 Gluten, structure of, 132–133 database, 71 effect on BYDV, 42 Glutenins, 132-133 Glycollate oxidase, 128 housefly resistance to, 96–97 molecular structure of, 94–96 relationship between molecular structure and insecticidal activity, 94–95 Goethite, 163 Grain growth, mathematical model of, 50 Grain legumes, See: Legumes Granular inoculants, 145 activity, 94-95
Institut National de la Recherche Agronomique, 87
Institute of Arable Crops Research (IACR), 11, 12
Institute of Horticultural Research, 211
Institute of Hydrology, 205
Institute of Terrestrial Ecology, 155, 199
Integrated management programmes, for nematodeinfested soils, 105
Intercropping research, 80
Interparticle bonding, 160-161
Invertase, in mycorrhizal roots, 142
Ion trap effect, See: Translocation
Iprodione, 115
IPSS, 70
Iron oxides, removal of from soil, 163 Grass, plastic, 92 productivity of, 45 Grasslands, mycorrhizal inoculation of clover in, 144
Great Yarmouth, soil survey in, 197
Grey mould, See: Botrytis cinerea
Ground pine, 99–100
Groundwater flow, 158–159
Gwent, soil survey in, 207 Hamamelose bisphosphate, 20–21 Harpalus rufipes, 90 Hatching, of cyst nematodes, effect of charcoal on, 110–111 Iron oxides, removal of from soil, 163 effect of herbicides on, 111 Iron rich soils, 163

330

Mannopine, 141
Maps, See: Soil maps
Market Weighton, 195
Markov-chain turbulent dispersion, 51–52
Martin Down National Nature Reserve, 207
Mathematical models, See: Models
Maximum Likelihood Program (MLP), 76, 79
Megoura viciae, sex pheromone of, 20, 100
Meligethes aeneus (pollen beetle), 29, 91
Meloidogyne spp., 112
Meloidogyne incognita, 106, 112
Metabolic inhibitors, effect of on nematodes, 113–114
Metals, heavy, 93
effect on establishment and nitrogen fixation by white clover, 154 Irrigation, of sugar-beet, 55 of winter wheat, 47 ISEM, 30, 120 Iso-electric focusing, 112 Isoleucine, 128 JANET, 70 Kdr, See: Knock down resistance KDS solution, 49 Kent, soil survey in, 198 Kenyan soils, potassium in, 155 Klebsiella/Enterobacter spp., 123 Knock down resistance, in houseflies, 96–98 Knowsley Hall Moss, 196 clover, 154 Metopolophium dirhodum, 34, 35, 72, 86, 88-90 Metribuzin, 111 Lancashire, soil survey in, 198 Land drainage, 196 Land evaluation, 200-203 Microcomputers, 71-72, 80, 203-204 Microcomputers, 71–72, 80, 203–204
Microlophium carnosum, 90
Micronutrients, in soils, 154
Microscope-slide collection, of nematodes, 112
Mildew, See: Erysiphe graminis
Millet, nitrogen fixation in, 143
Mineralogy, of soil clays, 163
Minster Agriculture Ltd., 207
Mobile crop shelters, 47, 152
Models, mathematical, 45
for herbicide movement in soil, 18
for transport of water and heat in soil, 160 Land Information System, 193, 203–205, 207
Land Is, See: Land Information System
Land management, soil survey for, 196
Land restoration, 199
Landfill sites, airborne microorganisms at, 123
Lawebigs. Leaching, model of, 149–150 nitrogen losses from, 16–17, 148–149, 151, 196, 199, 201 Lead, in soils, 93 for transport of water and heat in soil, 160 for turnover of organic matter in soils, 150–151 of DNA sequences, 77 of grain growth, 50 of nitrate leaching, 149–150 of P and K uptake, 151–152 of photosynthesis, 50 of resistance development in houseflies, 97–98 Leaf blotch (Rhynchosporium secalis), on barley, 52, 117 on wheat, 36 Leatherjackets, 54 Leeks, mycorrhiza on, 141-142 Legumes, of photosynthesis, 50 of resistance development in houseflies, 97–98 of spread of mycorrhizal infection, 142 splash droplet dispersal modelling, 51–52 statistical, 77 to predict badger density, 210 winter wheat model, 20, 50–51 Moisture, measurement of by NMR spectrometry, 165 Mole and pipe drain system, 159 Molecular structure, of insecticides, 94–96 Molluscicide, 36 diseases of, 115-116 nematodes on, 105 nitrogen fixation in, 142-143 Lenacil, 111 Lepidoptera, pheromones in, 99–100 Lepidoptera maculans, 30 Lettuce, 202 Leucine, 128 Leverhulme Trust, the, 15 Leverhulme Trust, the, 15
Library, database management in, 14, 15
Light leafspot, See: Pyrenopeziza brassicae
Light response curves, for wheat, 47
Liming, long term, 43
Lincolnshire, soil survey in, 201
Lipophilicity, of fungicides, 101–102
Liverpool, soil survey in, 196, 202
Liverpool Molluscicide, 36 Monoclonal antibodies, 119–120, 122 Morphometric techniques, for identifying nematodes, 112 Mummy formation, by aphid parasitoids, 89–90 Musca domestica, See: Housefly Mutants, in barley, 128–129 Mycorrhiza, vesicular arbuscular, Livestock, at Broom's Barn, 67 comparison of strains, 141 for tropical legumes, 143-144 host-endophyte relationships, 142 at Broom's Barn, 67 at Rothamsted, 45 statistical analysis for, 74–75 Loess-like sediments, 164 Long Ashton Research Station, 11, 18, 20 Long Term Liming experiments, 43 Longidorus spp., 54, 61 Low molecular weight subunits, of glutenin, 133 Lucerne, nematodes on, 104–105 Lucerne vein-yellowing virus, 116 Lumins, 40, 44 isozyme variation in, 141 on leeks, 141 susceptibility of roots to infection, 141 transfer of opines to, 140–141 Myzus persicae, 55, 62, 64–65, 87, 91, 96 insecticide resistance in, 19–20, 96, 98–99, 116, 121 ¹⁵N₂ labelled fertilizer, 148
 National Farmers' Union, 76
 National Institute of Agricultural Botany, 58
 National Peat Inventory, 198–199
 National Soil Inventory, 204–211
 National Soil Map, 210–211
 National Vegetable Research Station, 18
 Nature Conservancy Council, 207
 Nebria brevicollis, 90
 Nematicides, 104–105, 108–109
 for use on oilseed rape, 107–108 Lupins, 40, 44 fungal invasion of, 116 inoculation with rhizobia, 144, 145 Lycopodium spp., spores of, 51 Macrosiphum albifrons, 91
Macrosiphum avenae, 120
Macrosiphum euphorbiae, 91
MAFF, 14, 20, 119, 193, 197–200, 203, 205, 211
Harpenden Laboratory, 56, 119
Maize, supply of N, P and K to roots, 151
Management practices, effect on organic matter. for use on oilseed rape, 107–108 See also: Aldicarb; Oxamyl Nematodes, beet cyst, 54-55 biochemical characterization of, 19, 112–113 biological agents for control of, 105–107 brassica cyst, 106–108 control of, 104–108 Management practices, effect on organic matter in soil, 150 Mancozeb plus maneb, 43 Mangold fly, in sugar beet, 54 Mannitol, 49

Nematodes (contd) culturing of, 113	ODA, See: Overseas Development Administration Oil, measurement of by NMR spectrometry, 165
cyst, 105–111 effect of metabolic inhibitors on, 113–114	Oilseed rape, aphids on, 29
egg parasitic fungus of, 105–106 hatching of, 110–111	at Rothamsted, 16, 43 diseases of, 30
identification of, 19	DNA studies with, 131
microscopic slide collection of, 112	dry matter growth, 27–28
morphological studies, 112 on beans, 104	factors limiting yield, 26–31 foliar nutrients for, 29
on legumes, 105	fungicides on, 27, 30
on lucerne, 104–105	growth and development, 26-27
on oilseed rape, 107–108, 110	herbicide on, 26
on red clover, 105 permeability of, 113	microflora of leaves and pods, 30
potato cyst, 36-37, 105, 108-113	nematicide trials with, 107-108
root knot, 105–106, 112	nematodes on, 29
scanning electron microscope studies of, 112 stem, 104–105, 113	nitrogen in plant sap, 28–29
taxonomy of, 18–19, 111–113	nitrogen in plants, 28 nitrogen in soil, 28
wilt fungi of, 108-109	oil content of seed and oil yield, 147, 158
Nematophagous fungi, 105–107	seed and oil yield, 27-28
Nematophthora gynophila, 107 Nepeta cataria, 100	spore dispersal in, 20 straw disposal before drilling of, 44, 157–158
Nepetalactone, 100	viruses of, 115
NERC Radiocarbon Laboratory, 150	yeasts on, 30
New Plant Products Laboratories 145	yields, 47–48, 147
New Plant Products Laboratories, 145 Nickel, in soil, 154	Onions, cultivation of seedbed for, 161
Nicotiana tabacum, See: Tobacco	pseudomonads in rhizosphere of, 140
Nitrate,	soil suitability map for, 201–202
effect of supply of on thylakolid composition in wheat, 49-50	Opines, transfer of, 140–141
leaching of, 16-17, 148-149, 151, 196, 199, 201	Opomyza spp., 34, 35 Organic matter, turnover of in soil, 150
uptake of, 126, 129	Orientation behaviour, of pea moths, 92
Nitrification, 156	Overseas Development Administration, 80, 143
Nitrogen, balance of, 148	Oxamyl,
deep, recovery of by wheat, 146	on oilseed rape, 107–108 on potatoes, 36–37, 105
effect of drainage on use of, 148-149	on sugar beet, 61–62
foliar, 148	Oxybutyrate, 128
immobilization of, 149 in oilseed rape plants, 148	Oxygen demand, for straw, 158
mineral, in soil, 149	
on winter wheat, 32–33	Paecilomyces lilacinus, 107
uptake of, 152 See also: Nitrate	Parasitoids, of aphids, 89–90
Nitrogen fertilizers,	Paratrichodorus spp., 54, 61 Park Grass, 156
comparative efficiency of, 73	Particle size analyser, the, 208
on sugar beet, 55 on winter wheat, 150	Patatin, 131, 133
prediction of requirements, 48-49	Patent application, for Rhizobium inoculum, 145 Pathogenesis related proteins, See: PR proteins
See also: Fertilizers	Pea moth,
Nitrogen fixation, 17–18, 129, 140, 142–143, 154	monitoring of, 91–92
Nitrogen uptake, 126 Nitrosomethylurea, 128	orientation behaviour of males, 92 Pea seed-borne mosaic virus, 115–116
NMR spectroscopy, 165	Peas,
Nodules, root, 17, 129	aphids on, 115
Non-ester central group, 95 Non-linear models, 76–77	nitrogen fixation in, 142–143
Norfolk, soil survey in, 198	viruses of, 115–116 vining, moth monitoring in, 91–92
Norsk Hydro Fertilizers Ltd., 154-155	Peat, See: National Peat Inventory
North Kent marshes, soil survey of, 198	Peat,
Northumberland, soil survey in, 194, 208 NPPL, 145	analysis of, 210–211
Nuarimol, 101–102, 117–118	wastage rate of, 198 Pebulate, 111
Nuclear Magnetic Resonance, See: NMR	Pegomya betae, See: Mangold fly
Numerical Algorithms Group, 77–78 Numerical density, soil, 162	Penconazole, 101–102, 118
Nutrient fluxes,	Penicillium spp., 123 Permeability characteristics, of stem nematodes, 113
in acid upland soils, 155	Permethrin, 98
into wheat roots, 152 Nutrient reserves, in acid upland soils, 155	Peronospora parasitica (downy mildew), on oilseed rape, 30 Pesticides,
Nutritional chemistry, 74	aphid resistance to, 19, 96, 98–99, 116, 121
'Ost onion' rose of stem non-trial 104 112	distribution of, in plants and soil, 101–103
'Oat-onion' race, of stem nematode, 104, 112	to control Docking disorder, 55
Oats.	See also: Aphicides; Fungicides; Herbicides; Insec-
Oats, at Woburn, 43	ticides and Nematicides
	ticides and Nematicides Pests, of sugar beet, 54-55, 62 pH gradient formation, in oat tonoplast, 153

pH, soil, 150-151, 153, 156	Precipitation Composition Monitoring Network, 16, 156
changes in, 16–17	Predators, of aphids, 86, 90
effect on lupins, 144	Prestel Farmlink, 14, 86–87
See also: Soil acidity Phaseolus vulgaris (French bean)	Prochloraz, 115, 117–118
Phaseolus vulgaris (French bean), granular inoculants for, 145	on barley, 42 on cereals, 41
nitrogen fixation in, 129, 143	on potatoes, 36
Pheromones, 94	Programs, See: Computer programs; Statistical program-
alarm, 101	ming
from Dasineura brassicae, 90	Prokaryotes, fastidious, 122
in insecticide sprays, 101	Prolamin storage proteins, See: Proteins
in lepidoptera, 99–100	Propiconazole, 41, 115
queen, 92-93	Proteins,
sex, in aphids, 19, 100	cereal grain, 131
Phialophora sp., 118–119	from potato, 131
Phialophora graminicola, 118–119 Phloem transport of posticides in 101	PR, 18, 133–134
Phloem, transport of pesticides in, 101 Phoma betae, control of, 58	Proton transport in oat tonoplasts, 153
Phoma leaf spot, on oilseed rape, 30	Protoplasts, regeneration from, 129–130 Pseudocercosporella herpotrichoides, (eyespot), 26, 35
Phorodon humuli, 88	on barley, 42
Phosphate,	on wheat, 33, 41, 116–117
rock, 143-144	Pseudomonads, in the rhizosphere, 140
water-soluble, in fertilizers, 154-155	Pseudomonas spp., 123
Phosphofructokinase, 126, 129	Pseudomonas solanacearum, 122
Phosphoglycollate phosphatase, 128	Psylliodes chrysocephela, on oilseed rape, 29
Phosphorus,	Pterostichus spp., 90
concentrations of in crops, 152–153	Purdue Agronomy Farm, 151–152
uptake of, 151–152	Pwllpeiran EHF, 199
Photorespiratory mutants of barlay 129 120	Pygmy beetle, in sugar beet, 54
Photosynthesis	Pyrenopeziza brassicae, on oilseed rape, dispersal of spores.
Photosynthesis, efficiency of, in wheat, 46–47	19–20, 51 Pyrenophora teres (net blotch on barley), 117
model of, 50-51	Pyrethroids, synthetic, 94–95
Pigs, space allowances for, 75	insect resistance, 96–98
Pine wilt nematode, 112	non-ester, 95
Plant Breeding Institute, the, 20, 121	PP321, 115-116
Plant cells, counting and sizing of, 49	structure-activity relationships, 94
Plant clinic, for sugar beet, 56	
Plastic grass, for pea moth experiments, 92	Queen honeybees, recognition of, 92–93
Ploughing, compared with direct drilling, 159–160	Quinacrine, 153
Pod midge, See: Dasineura brassicae	Dabbits summer of 100
Pollen beetle, See: Meligethes aeneus Pollution of acuifers 206-207	Rabbits, survey of, 199 'Padar Tayonomy' to detect airborna insects 87, 88
Pollution, of aquifers, 206–207 Polygodial, 19, 99, 101	'Radar Taxonomy' to detect airborne insects, 87–88
Polymyxa graminis, 119	Radiocarbon dating, of soils, 150 Raindrops, penetration of in crop canopies, 52
Population genetics, of aphids, 88	Rainfall, 156, 185
Potassium,	See also: Weather
balance of, in long-term experiments, 155-156	Rape, See: Oilseed rape
in Kenyan soils, 155	Red clover, nematodes on, 105
uptake of, 151-152	Regeneration, of arable crop plants from culture, 129-130
Potassium dextran sulphate, 49	Remote sensing, for soil studies, 164–165
Potato cyst nematodes, 105, 108–111	Representative soil sampling, 75
Potato leafroll virus, 21, 121	RESCU, 69-72
Potato root diffusate, hatching of nematode eggs in, 110–111	Research support, 13
Potato virus Y, 121	Residues, pyrethroid, housefly resistance to, 97
aphid vectors of, 87 Potatoes,	Resistance, to insecticides, 96–98 genetic basis of, 99
at Rothamsted and Woburn, 44	monitoring of by immunoassay, 98–99
carbon dioxide assimilation in, 20–21	Respiratory diseases, 123
carbon metabolism in, 126-127	Rhizobium spp.,
cold-induced sweetening in, 126, 129	genetics of, 142
comparison of cultivars, 44	in Colombian project, 143-144
Désirée, 44	inoculation methods, 144-145
diseases of, 120-121	nodulation on lupins, 144
eelworm-resistant, 44, 105	on clover, 144
gangrene on, 120	Rhizobium leguminosarum, 142–143
intensive production, 36–37	Rhizotium meliloti, 142–143
nematodes on, 105, 108–111	Rhizoctonia cerealis, 26 Rhizoctonia solani, (steam canker), on potatoes, 120–121
patatin genes of, 133 phosphate on, 154–155	'Rhizomania', of sugar beet, 56
production of somatic hybrids, 21, 130	Rhizosphere, pseudomonads, of, 140
regeneration from protoplasts, 130	Rhopalosiphum padi, 26, 86-89, 120
seed, 121	Rhynchosporium secalis, (leaf blotch), 26
storage proteins of, 131	dispersal of spores, 52, 122
tuber diseases of, 37	β -ribbon, 134
viruses of, 87, 121	Ribulose bisphosphate carboxylase, 20, 50, 126–128
Powdery mildew, See: Erysiphe graminis or Erysiphe betae	Rice, nematodes on, 112
PP 969, 101, 118 PR (pathogenesis related)-proteins, 18, 133–134	Ricinus communis, pesticide movement in phloem of, 101 Ring infiltrometers, 159
Pratylenchus spp., 29	RNA, messenger, 128
	B-1,

Rock phosphate, 143-144 Root growth, Soil biomass, 150-151 Soil contamination, 16–17 Soil erosion, 201, 208 Soil mapping, 194–198, 210 for land evaluation, 200–203 Soil mineralogy, 163 in sugar beet, 60-61 of potatoes, effect of nematodes on, 108-109 Root knot nematodes, See: Nematodes Roots, Soil mineralogy, 163
Soil moisture,
deficits, 204–205
in upland soils, 209–210
Soil plasticity and shrinkage, 210
Soil salinity, 201
Soil sampling, 165
Soil structure, 159–163 maize, supply of N, P and K to, 151 observation tubes, 47, 152 susceptibility of to infection, 141 wheat, growth of, 151-152 Rotary atomiser, 101 Rothamsted, barley at, 42, 43 cattle at, 45 cattle at, 45
farm report, 41–45
future of, 11–12
triticale and rye at, 43
weather at, 41, 324
wheat at, 41–42
Rothamsted archive, 15
Rothamsted Farming Service, 14
Rothamsted General Survey Program, 79–80
Rothamsted Insect Survey, 14, 72, 85
Cereal Aphid Monitoring Scheme, 86–88
'Roundup', See: Glyphosate
Routine analysis, 73
'Royal 350', 106
RuBP carboxylase, 20
Rye, 42, 43, 118, 132 Soil structure, 139–163
Soil suitability,
for badger setts, 210
for various crops, 201–202
Soil Survey and Land Resource Centre, 14
Soil Survey, Information System, 203
Soil Survey, of England and Wales, 14, 193–198
Soil Survey, of Scotland, 203, 205 Soil surveys, Alnwick and Rothbury, 194–195 Boston and Spalding, 196–197 Cementstone lowlands, 194–195 Cheviot Hill, 194–195 Exmoor, 209 Fenland, 197 Friskney, 201 Great Yarmouth, 197 Gwent, 207 Humber warplands, 208, 209 Kent, 163, 198 Saline soils, survey of, 200 Salt affected soils, 197 Lancashire, 198 Lincolnshire, 201 Saltmarsh creek systems, 197 Lincolnshire, 201 Liverpool, 196, 202 Market Weighton, 195 Norfolk, 198 North Kent, 197, 200 Saxmundham, potassium experiment at, 155
wheat at, 154
SBREC, See: Sugar Beet Research and Education
Committee Northamptonshire, 163 Northumberland, 194, 208 Scanning electron microscope, 112, 182 Scientex systems, 70 Sclerotinia sclerotiorum, 30, 115 Scottish Crops Research Institute, 21 Sleaford, 202 Somerset, 199 Stamford Bridge, 195 Suffolk, 198 Sussex, 164 Screening methods, for selection of barley mutants, 129 SDS-PAGE, 99 Secale, 132 Soil water, 207-208, 210 Secale, 132
Secalins, of rye, 132
Seed advancement studies, for sugar-beet, 57–58
Seedbeds, cultivation and physical properties of, 161
Seed Rates and Sowing Methods experiments, 43
Seed treatment, of sugar beet, 57–58
Seed weevil, See: Ceutorhynchus assimilis
Seedling emergence, effect of temperature on, 161–162
Septoria spp., on winter wheat, 33, 35, 41
Septoria nodorum, 35
Sentoria tritici 35 Soils, acidification of, 156 actinomycetes in, 140 adenylate energy charge measurements in, 150 analysis of, 164 biomass carbon in, 150–151 copper and nickel in, 154 hydraulic conductivity, 158–160, 208, 210 hydralic conductivity, 136–160, 2 hydrological classification of, 211 iron-rich, 164 man-made, 164 pH of, 150–151, 153, 156 plasticity of, 210 potassium in, 155 realing, 200 Septoria tritici, 35 Separatia spp., 123
Sewage sludge, compared with farmyard manure, 17–18
Sex attractants, See: Pheromones
Sharp eyespot, See: Rhizoctonia cerealis
Shear modulus, of soil, 160–161

8 choots, 124
8 choots, 124
8 choots, 124 saline, 200 radiocarbon dating of, 150 Shear modulus, of soil, 160–161 β-sheets, 134 Shelters, See: Mobile crop shelters Shrinkage forces, in clay soils, 161 Silver scurf, of potatoes, 121 Simulation models, See: Models Sitobion avenae, 26, 34, 35, 72, 86, 89–90, 120 virus from, 89 radiocarbon dating of, 150
salt affected, 197
stability of, 160-161
suitability of for horticultural crops, 196
tilled, modelling transport of water and heat in, 160
transport in, 158-159
turnover of organic matter in, 150
waterlogging of, 208
Wisbech, 196-197
X-ray analysis of, 208
Solanum brevidens, 130
Somaclonal variation, in cereals, 131 Sitobion fragariae, 88 Sitodiplosis mosellana, 34 Sitona spp., on lupins, 91 on lucerne, 105 Somaclonal variation, in cereals, 131 Somatic hybrids, of potato, 21, 130 Somerset, soil survey in, 199 Sleaford, soil survey in, 202 Slugs, 37 Slurry inoculation techniques, 144-145 Sorbitol dehydrogenase, 88 Sorghum, nitrogen fixation in, 143 Specific Field Survey, at Broom's Barn, 53-54, 56, 62-64 Software, appraisal of, 204 Soil acidity, 16–17, 198–199 See also: pH Soil analysis, 165 Spectroscopy equipment, 94 Spinach chloroplasts, 20-21 334

β-Spiral, 133	Sulphur,
Splash dispersal, of fungal spores, 51–52	on oilseed rape, 29
Spores, dispersal of, 19–20, 51–52, 122–123	Sumatra disease, of cloves, 122
Sporobolomyces spp., 30–31	Sunflowers, 44, 91 diseases of, 115
Spraying systems, 101 Stability, soil, 160–161	Super-kdr, 97
Stamford Bridge, soil survey in, 195	SURFACE II computer program, 71, 203–204
Statistical analysis, 73	Survey of fertilizer practice, 75
Statistical computing, 77–80	Surveys, statistical, 75–76
Statistical models, See: Models	Sym plasmids, 142–143
Statistical research, 21	Symbiotic plasmid, in rhizobia, 142-143
Statistical theory, 76–80	Synecoccus, 127
analysis and design, 76	Synthetic pyrethroids, See: Pyrethroids
routine analysis, 73	Syrphids, 86
Stem canker, See: Rhizoctonia solani	
Stem flea beetle, See: Psylliodes chrysocephela	Take-all on cereals, 101-102, 117-119
Stem nematodes, control of, 104–105 culturing of, 113	ELISA studies of, 119
Storage proteins, See: Proteins	on barley, 34
Strangles, in sugar beet, 56	on wheat, 33, 34, 36, 140
Straw,	on wheat, barley, rye and triticale, 118, 140
burning of, 157	Taxonomy, of nematodes, 18-19, 111-113
disposal of, 157-158	Temperature, efect on seedling emergence, 161-162
incorporation of, 15, 18, 33-36, 42, 44, 66, 156-158, 196,	Tensile stresses, in clay soils, 161
201-202	Terminal spikelet phase, in wheat, 50–51
toxin production and oxygen demand, 158	Thaumatin, 134
Streptomyces, 140	Thaumatococcus danielli, 134
Strontium isotope ratios, in loess, 164	Thiobendazole, 104–105, 121
Stubble, incorporation of, 157	Thiodicarb, 104–105 Thiofanox, 61–62
Suction traps, 85–88 Suffolk, soil survey in, 198	Thiram,
Sugar beet,	for seed treatment of sugar beet, 58
aldicarb on, 55–56, 61–62, 64–66	Threonine, 131
aphids on, 55	Thylakoid composition, in wheat, 49-50
at Broom's Barn, 53-67	Tillage, 160–163
bird grazing in, 54, 62	Tissue cultures, wheat, 130–131
'bolting' of, 53-54, 57	Tissue water, for expressing phosphorus concentrations in
chlorsulphuron damage to, 102-103	crops, 152–153
cultivation techniques, 57	Tobacco, 49
database, 71	hordein genes from, 132
devernalising of seed, 58	PR proteins from, 18, 133–134 virus diseases of, 134
Docking disorder, 54–56, 61–62	Tobacco mosaic virus, 134
effect of herbicide residues on, 18 fibrous root growth, 60–61	Tonoplast, oat, onion transport across the, 153
field mice in, 54	Topology of soil structure, 162
growth of, 53-56	Toxic metals, See: Heavy metals
headland zones in, 59	Toxin production, by straw, 158
herbicides for, 17-18, 54-56	Traps, insect, 85–88
hymexazol on, 58-59	Trehalose, in spores of Glomus, spp., 142
irrigation of, 55	Triadimenol, ('Baytan'), 25, 26, 42, 117-118, 147
mangold fly in, 54	Tri-allate, 111
nematodes on, 54-56, 61-62	Triazoles, degradation of in soil, 102
nitrogen on, 55	Trichoderma spp., 140 Trichodorus spp., 61
nitrogen uptake by, 48	Trifluoromethyl compounds, 95
Nomo, 63 pesticides on, 55, 61–62	Trifolium repens, See: Clover
pests of, 54–55, 62	Trimethylsilyl derivatives, 127
plant clinic for, 56	Triticale, 43, 118
powdery mildew in, 62-64	Triticum-Aegilops group, 132
prediction of N fertilizer requirements, 48-49	Tropical legumes, nitrogen fixation in, 143
protoplast studies with, 130	Tuber diseases, of potatoes, 37, 131–132
seed advancement studies, 57-58	Turbulence, effect on spore deposition, 51
seed treatments, 58-59	β-turns, 133
SKM, 63	Ultrathia polosydomida colo 112
soil N supply, 48	Ultrathin polacrylamide gels, 112
soil pesticides for, 62 strangles in, 56	UNIP, 11 Unit of Insect Neurophysiology and Pharmacology (UINP).
surveys, 75	11
variability of seedling growth, 59–60	University of Birmingham, 97
viruses of, 55–56, 64–66, 121–122	University of Lancaster, 129
weed beet, 54	Urea,
weed control in, 54	on oilseed rape, 148
wild beet, 63	on winter wheat, 41, 147–148
yields, 48, 56	VA
See also: Beet cryptic virus; beet mild yellowing virus;	VA mycorrhiza, See: Mycorrhiza
Beet necrotic yellows vein virus; Beet western yellows	Valine, 128 Variance, estimation of, 76
virus; Beet yellows; Virus yellows Sugar beet factory, outbreak of asthma in, 123	Variance multiplier, the, 76
Sugar Beet Research and Education Committee, 11	Varroa jacobsoni mites, infestation of honeybees with, 19
Sulphonylurea herbicides, 129	92

Vectors, aphid, 19-20, 64-66, 86-87, 89, 116, 120-121 Vegetables, soil suitability for, 176 Wheat (contd) for breadmaking, 131 fungicides on, 117 grain quality, 153 grain yield, 33, 35 growth and development, 31–32 Hustler, 31 Vernolate, 111 Vernolate, 111
Verticillium spp., interaction with nematodes, 108
Verticillium chlamydosporium, 105–107
Vesicular arbuscular mycorrhiza, See: Mycorrhiza
Vicia faba, See: Beans
Viewdata systems, 14, 149
Virusee
Virusee leaf area index, 46 leaf expansion and senescence, 46, 49 light interception and growth, 46 Longbow, 41 Viruse aphid transmission of, 64–66, 86–87, 89, 116, 120–121 cloning of, 121–122 of barley, 14, 15, 26, 42, 86–87, 89, 99, 119–120 of grain legumes, 115–116 of honeybees, 92 Longbow, 41
mathematical models for, 50–51
Mission, 33–34
nitrate N in shoots, 32, 49–50
nitrogen content of, 32
nitrogen on, 32–33, 46, 115, 146
nutrient uptake by, 42, 151–152
on Broadbalk, 148, 153–154
pests of, 34–35
photosynthesis in, 20, 46–47
recovery of deep N from, 147, 149
regeneration from embryos, 131 of oilseed rape, 115 of potatoes, 87, 121 of sugar beet, 55–56, 64–66, 121–122 of sunflower, 115 of tobacco, 134 Viscometric analysis, 133 regeneration from embryos, 131 root growth of, 151 RuBP carboxylase in, 20 sowing date, 31, 47, 117–118, 146 take-all on, 140 Visitors, to Rothamsted, 45 Warren Spring Laboratory, 156 Waste, domestic, airborne microorganisms associated with, 122-123 122–123
Waterlogging, of soils, 208
Water-table, rise in, 159
Weather, 16
at Broom's Barn, 54–55, 63, 326
at Rothamsted, 41, 324
at Woburn, 41, 325
Weed beet, 54 thylakoid composition, 49-50 tissue culture with, 130-131 turgor of, 153 turgor ot, 153 uptake of P and K by, 151–152 volunteers in, 34–36 winter, simulation model for, 20 yield variations, 146–147 White clover, See: Clover Whitefly, insecticide-resistance in, 96 Wilt fungi, on nematodes, 108–109 Weed control, See: Herbicides Weed Control, See: Fierbicides

Weed Research Unit, 18

Weevils, See: Sitona spp.

Welsh Plant Breeding Station, 140

West Germany, studies of CO₂ assimilation inhibitors in, 20-21 Wind erosion, 197
Wind tunnel experiments, with fungal spores, 51
Winter Rain Acceptance Potential map, 211
Wisbech soils, 196–197
Woburn, Western blotting, 133-134 Wheat, after beans, 146 after oilseed rape or oats, 146 barley at, 42 oats at, 43 triticale and rye at, 43 weather at, 41, 325 apical development, 50 at Rothamsted, 41-42, 153 at Rothamsted, 41–42, 153 at Saxmundham, 154 at Woburn, 41–42 Avalon, 33, 34, 41–42, 50, 147 comparison of cultivars, 41–42 development of winter wheat, 47 diseases of, 33, 35, 41, 116–119 droughting response in, 47 Durum, 133 effect of straw treatment on, 33–4 Woburn Ley Arable Experiment, 43 Word processing systems, 72 Worms, See: Earthworms Wound-hormones, from tobacco, 134 X-ray diffraction, 163 Yields, of cereal crops, variations in, 164-165 effect of straw treatment on, 33-36 factors affecting take-all on, 117-118 foliar urea on, 147 Zea mays, See: Maize Zinc, in soils, 93