Thank you for using eradoc, a platform to publish electronic copies of the Rothamsted Documents. Your requested document has been scanned from original documents. If you find this document is not readible, or you suspect there are some problems, please let us know and we will correct that.

The Invertebrate Fauna of the Park Grass Plots II. Surface Fauna

C. A. Edwards, C. G. Butler and J. R. Lofty

C. A. Edwards, C. G. Butler and J. R. Lofty (1976) *The Invertebrate Fauna of the Park Grass Plots II. Surface Fauna ;* Rothamsted Experimental Station Report For 1975 Part 2, pp 63 - 89 **- DOI: https://doi.org/10.23637/ERADOC-1-34504**

The Invertebrate Fauna of the Park Grass Plots

II. Surface Fama

C. A. EDWARDS, C. G. BUTLER and J. R. LOFTY

Introduction

The Park Grass experiment, begun in 1856, was designed to find out how various manurial treatments affect the productivity of old pasture. Prior to the experiment, the land had been in grass for several centuries and seemed to have a uniform vegetation. Originally, there were 20 plots ranging in area from one-half to one-eighth of an acre but some of these have since been subdivided. The unreplicated treatments compared the yields of hay from plots that received no manure with those from others that received organic manure (farmyard and fishmeal); a range of mineral fertilisers only; a range of nitrogenous fertilisers only and a range of mixed mineral and nitrogenous fertilisers with different levels of nitrogen. The nitrogen was in two main forms, nitrate of soda and sulphate of ammonia. In the original experiment, two plots received organic manure and twa none, but, seven years after the beginning of the experiment (1863) no more manure was given to one of the organic manure plots (Plot 2). As a result of the treatments some plots became acid and the sward deteriorated, so from 1903, lime was applied regularly to the southern half of most plots. In 1965, each plot was subdivided again into two, giving four plots treated in the following ways:

Lime added \int (a) Lime added to maintain the pH as in 1965.

from 1903 (b) Lime added to give a pH as close to $6·0$ as possible.
No lime \int (c) Lime added to the more acid plots to give a pH

 N (c) Lime added to the more acid plots to give a pH as close to 5.0 as possible. added until
1965

(d) No lime added.

Nevertheless, the pH of the various plots is still very variable, ranging from: (a) plots from 4.6 to 7.5, (b) plots from 4.9 to 7.3, (c) plots from 4.4 to 6.0 and (d) plots from 3.8 to 6.0. The treatments have greatly influenced the very varied flora of the plots, which includes grasses, clovers and weeds. The botanical composition of the subplots has been studied annually at regular intervals through the year since 1900; it changes seasonally and there is also a gradual more permanent change (Brenchley, 1935, 1969; Williams, 1974). The numbers of plant species range from only two per plot $(11/1d)$ up to to 30 (12a), the greatest diversity still being in the unmanured plots although these yield poorly.

The effects of the treatments on the soil fauna were reported last year (Edwards & Lofty, 1975). The present paper assesses their influence on the surface-active fauna. Many invertebrates spend part of their life-cycles at or near the soil surface, but this investigation has been confined to slugs and snails (Mollusca), millipedes (Diplopoda), centipedes (Chilopoda), spiders (Araneae), springtails (Collembola), bugs (other than aphids) (Hemiptera-Heteroptera), beetles (Coleoptera), and ants (Hymenoptera).

There are no satisfactory methods of assessing populations of surface-active invertebrates accurately. This is mainly due to the difficulty of extracting or separating the animals from the vegetation amongst which they live. We used two methods in an

attempt to minimise errors. The first, which involved trapping animals in containers buried in the soil (pitfall traps), depends upon the animals falling into the traps as they move over the soil surface. Therefore, the number of animals trapped depends not only upon the size of the populations but also upon the type and degree of activity of particular animals. Activity in turn depends upon weather conditions (especially temperature), soil moisture, the physiological state of the animals, and the general habitat surrounding the trap. In the Park Grass plots, the major variable was the habitat, because the flora differs considerably in diversity and rate of growth between plots. Weather and other physical factors tend to affect all plots more or less equally. Hence, the numbers trapped in the different plots were likely to depend most upon diversity, density and height of the flora, and the differences to be greatest in the months immediately before the hay was cut.

The other method used was to suck the animals from an enclosed unit area with a portable modified vacuum cleaner. This gave a much better estimate of the fauna in different plots but also had certain drawbacks. Even powerful suction does not extract all the animals from dense foliage because some invertebrates can cling to plants and debris and resist being sucked up much more than others.

Methods

Plots lb, c, d;2a, d; 7b, c; 8b, c; 9a, b, c, d; l4b, c; l7b, c, and l8a, b, c, d, were sampled in two ways. In each plot, eight 5 cm diameter by 10 cm deep white plastic containers were sunk into the holes taken for soil samples in 1973, with their rims flush with the soil surface. Each container was covered by a snap-on lid when not in use. Once a month, from June 1973 to May 1974, the lids were removed at 12 noon, a small quantity of 50 $\%$ industrial alcohol added and the containers left open until noon the following day, when they were replaced by empty substitute containers with lids. The catches were taken to the laboratory and transferred to vials for storage in 70% alcohol until they could be sorted and identified.

In June 1974, two random half-metre square quadrats in each of the same sub-plots were sampled using a portable suction sampler powered by a JLO Type 35 two-stroke engine. Each quadrat was surrounded by a collapsible I m high plywood barrier before sampling. The quadrat was systematically traversed with the nozzle of a flexible tube with a 6 cm aperture, for 3 min, and the invertebrates collected in a porous paper bag inserted in the collection container of the sampler. The air speed at the nozzle was 300 kph.

Animals were transferred to 70% industrial alcohol in the laboratory to await sorting and identification.

Maximum and average crop heights, and density at ground and flower level were assessed by eye in June 1974. The crop data used were total dry matter (t ha⁻¹) for both cuts in 1974, and the number of plant species assessed by the Rothamsted Botany Department in June 1973. Cuts were taken on 13 June and 15 September 1973 and 21 June and 13 December 1974. The pH data used were calculated from results of various assessments by the Rothamsted Chemistry Department (Rothamsted Report for 1963, 244-247; for 1971, Part 2, 177-180). Some of the pH data for 'a' and 'd' sub-plots date back to 1959, but are believed to differ little from present levels. Some of the acid plots have developed a surface 'mat' which differs in pH from the soil immediately beneath; the pH of this layer has not been used and pH values given are for the $0-7.5$ cm layer of soil. The values for percentage nitrogen and organic carbon and ppm of P and K used in the correlations were those in the Rothamsted Report for 1963.

All the data presented must be considered with these reservations in mind before conclusions as to the direct and indirect effects of the fertiliser treatments on the surface fauna are made.

Results

 (1) General. The total numbers of animals caught in pitfall traps June 1973–May, 1974 are summarised in Table 1 and the correlation coefficient between these data and crop soil characteristics are given in Tables 2 and 3. The numbers of animals in samples obtained by suction samplings on 18/19 June 1974 are given in Table 4. The weather conditions during the sampling period are summarised in Table 5. Correlation coefrcients between the faunal data and crop and soil characteristics are given in Table 6. Any significant correlations were plotted as histograms or scatter diagrams (Figs. 1–12). Orly spiders, springtails and beetles were identified to species and the relative abundance ofthe different species is summarised in Figs. l3-15. The phenology ofthe different groups and species are illustrated in Figs. 16-23.

(2) Effects of treatments. Assessment of the influence of the treatments on populations of surface-living fauna was extremely difficult. These animals spend at most only part of their life in the soil, so it is probable that soil characteristics have little direct effect on their numbers.

Any differences in populations between plots were most likely to be caused by diferences in plant diversity, density or height, all of which influence the available food and living space and also the microclimate in which these animals live.

Two features of the Park Grass experiment did not favour great differences in the number and diversity of animals between plots. First, the layout of the experiment is very complex (Edwards & Lofty, 1975), with plots 12.6 to 25.2 m wide and with different lengths. In such small plots movements of many of the surface-active invertebrates is likely between plots. Furthermore, several of the species of spiders that were most abundant in the catches such as Dicymbium nigrum, Tiso vagans, Savignya frontata, Erigone dentipalpis, E. atra, Bathyphantes gracilis and Lepthyphantes tenuis are all common aeronauts (Locket & Millidge, 1953) and thus likely to appear on any plot. Second, the influence of the foliage changes seasonally, being at a maximum in June and early September immediately prior to cutting, and having a minimum effect in autumn and winter when the grass in most plots is short. Hence, attempts to correlate numbers of animals caught or sampled with crop characteristics are most likely to be successful in samples taken immediately prior to harvest. Species that are most numerous in autumn, winter or spring are probably less affected by crop characteristics than those that are most abundant in summer. For this reason, separate correlations were made for each month of the pitfall trapping, although the individual monthly correlations are not given in the Tables.

Probably due to the difficulties in population assessment, the effects of the different treatments produced few significant effects. Unfortunaiely, even when significant correlations were obtained, there was usually some doubt as to the real cause and the observations require further experimental work to verify their significance.

The relative numbers of arthropods from different groups caught by pitfall trapping differed considerably from those collected by the suction apparatus. In particular, spiders which were the second most numerous group in the pitfall samples, occurred very infrequently in the suction samples, and beetles, which were the next most common arthropods in the pitfall samples, were scarce in suction samples. It seems unlikely that such large differences can occur only because spiders and beetles are more active, and hence more readily caught in pitfall traps. Probably, the spiders were able to cling to foliage and detritus and to remain in crevices in the soil and so avoid being sucked up and the beetles remain concealed in soil cracks and crevices. These differences illustrate the difficulty of assessing populations of surface-living arthropods.

 \overline{c}

TABLE 1

B

Ĵ.

0.3949
 0.2812
 0.1057 $\begin{array}{c} 0.2011 \\ -0.1081 \\ 0.1912 \end{array}$ 0.1364
 0.0687 1379
00450
00000 0.1555 0.1066 $\overline{}$ \mathbf{I} I -111 0.1746
 0.1020
 0.4833 0.0471
 0.1243
 0.1725 0.4271
 0.2436 0.4407 -0.1276 4742
2203
0114 4135 0.1124 0.1831
0.2581
0.2887 0.1799 $\ddot{\circ}\dot{\circ}\dot{\circ}$ $\ddot{\circ}$ $\overline{}$ 1326
00:1633
00:21398 2416
2274
0812 0.1572
 0.0074
 0.1899 -0.0298
8670.0-1 0.0733 0.1597 $\dot{\circ}\dot{\circ}\dot{\circ}$ 1 п -0.1297
 -0.0820
0.2090 -0.0476
 -0.1330
 0.0984 1253
0.2937
0.0170
0.02276 0365 0.3597
 0.1365 -0.1690 $\ddot{\circ}$ \mathbf{I} -0.1189
 -0.1439
0.1021 -0.1097
0.0805
5080-0-0 -0.2080
 -0.4186 2048
2212
4777
4777 -0.3166 -0.1107 $\ddot{\circ} \ddot{\circ} \ddot{\circ}$ -0.1126
 -0.3344
 -0.2378 388234 -0.3032
 -0.1440 2031
0277
2332 -0.2691 -0.1040 $rac{1}{100}$ 1873 -0.3711
 -0.0266
0.3146 0.2219 12927
14771
2590 0.0555
 0.1831 -0.2834 $\dot{\circ}\dot{\circ}\dot{\circ}$ 1 -0.0000
 -0.0013
 -0.0013
 -0.0000 0.1554
 0.3286
 0.4291 0.2348
 -0.0819
 0.2742 $.2429$ -0.3445 0.1554
 0.1287 $\ddot{\circ}$ -0.1016
0.0917 3427
5617
2794 0.4662
0.2342
0.5236 0.3354 -0.2776 $\ddot{\circ}\dot{\circ}\dot{\circ}$

3343
4214
2422

 $\dot{\circ}\dot{\circ}\dot{\circ}$

0.5876
0.5727
0.2696

Coleoptera
Staphylinidae adults
Staphylinidae
Staphylinidae
Peronia madiata
Feronia madiata
Pictal Coleoptera sp.
Total Coleoptera sp.

 -0.3232

 -0.2286

species
Total Collembola sp.

 $\ddot{\circ} \ddot{\circ} \ddot{\circ}$

3256
1063
5129

 $\ddot{\circ} \dot{\circ} \dot{\circ}$

 0.4867
 0.2715
 0.2715

 0.0969
 0.0969 0.2413

 -0.1850
0.0606

Hymenoptera
Diptera

67

 0.3469

Total arthropods
(Arachnida +
Hexapoda)

PARK GRASS PLOTS: SURFACE FAUNA

TABLE 4

69

TABLE 5

The most valuable of the results obtained were the assessment of the diversities of the fauna on this old grassland site and the phenology of some of the species of arthropods that lived in it.

Yield was the crop characteristic that was correlated with numbers of some species of arthropods most strongly.

Although there was a tendency for overall pitfall catches of spiders to be positively correlated with the June yield ($r=0.3657$), the only strong correlation was between the catches of spiders in May $(r=0.5984)$, the month prior to cutting, and the yield, in June.

Numbers of Erigone atra (Fig. 4) and to a lesser extent, of E . dentipalpis, were also positively correlated with yield, as were those of Savignya frontata. Numbers of two species of spiders, Pardosa palustris (Fig. 2) and Pachygnatha degeeri (Fig. 3) were negatively correlated with yield. Other species showing weaker negative correlations with yield included Meioneta beata, Agyneta decora, Oedothorax fuscus and Dicymbium nigrum. Clearly, crop height was the most important factor influencing this correlation, because wherever there was a strong correlation with yield there were also correlations with the mean and maximum heights of the crop. Crop density could also be positively correlated with numbers of a few species, particularly *Meioneta beata, Pardosa palustris* and *Erigone* dentipalpis.

There was little association between yield, crop height or density and the numbers of springtails caught (Table 3) although numbers of most Collembola species tended to be negatively correlated with crop yield and height.

More beetles of most species were trapped in plots with high grass yields (Fig. 5) and in particular, many more carabid beetles (Fig. 6) and staphylinid beetles (Fig. 7) were caught in high-yielding plots.

Conversely, more ants were caught in low-yielding plots (Fig. 8) with short grass (Fig. 9).

There were no significant correlations between plant characteristics and the numbers of arthropods collected by suction trapping (Table 6). By far the most numerous arthropods in the suction samples were Collembola (Table 4) but there were few correlations with the numbers of the animals collected in pitfall traps. Numbers of Collembola tended to be negatively correlated with yield for isotomid and entomobryid Collembola, but positively with yield for sminthurid Collembola. These differences may be related to the habits of these springtails, the first two families occurring mainly at ground level and the latter mainly on foliage.

Few correlations were obtained between soil characteristics and arthropod populations; and when they occurred they were probably due to indirect influence on crop growth. Soil pH was positively correlated with the numbers of two species of spiders, Oedothorax fuscus ($r=0.5192$) and O. retusus ($r=0.5463$) and negatively with those of one species of springtail, Isotoma viridis ($r = -0.5014$).

The level of soil phosphorus was posit

The level of soil phosphorus was positively correlated with numbers of one species of spider, Erigone atra and one species of springtail, Isotoma viridis, and the level of soil potassium seemed to have different effects on different groups of arthropods. This soil characteristic was positively correlated with the numbers of six species of spiders trapped in July; these were *Oedothorax fuscus* $(r = 0.5129)$, O. retusus $(r = 0.5518)$, Pachygnatha degeeri (r = 0.5721), Erigone dentipalpis (r = 0.6544), E. atra (r = 0.4731) and Savignya frontata ($r = 0.5806$). Potassium had little influence on the numbers of springtails trapped, if anything the correlation was negative. There was a tendency for the level of potassium and numbers of ants $(r = 0.4271)$ and beetle larvae $(r = 0.4833)$ to be positively correlated; these latter effects may be direct because these arthropods spend most of their lives in soil.

https://doi.org/10.23637/ERADOC-1-10

https://doi.org/10.23637/ERADOC-1-10

 $pp 12$

https://doi.org/10.23637/ERADOC-1-10

Floral diversity seemed to have little influence on numbers of soil arthropods. Numbers of only one species of spider, Erigone atra (Fig. 10) and one species of springtail, Isotoma viridis (Fig. 11) were strongly negatively correlated with plant diversity, and for both species the fewer the species of plant present the greater the numbers of individuals trapped. Of the three groups of animals that were identified to species, only for the Collembola was floral diversity correlated with the number of species caught (Fig. 12). This is not surprising, because whereas many springtails feed on plant material, all spiders and all but a few carabid and staphylinid beetles are carnivorous.

(3) Phenology. Few detailed studies have been made on the fauna of old pasture. The intensity of our sampling on Park Grass (392 pitfall traps for each of 12 monthly samples) yielded considerable data on the phenology of the fauna, particularly of the spiders. Unfortunately, pitfall traps have considerable disadvantages in assessing relative abundance, because their effectiveness depends on the activity of the animals trapped, and they selectively sample the fauna. For instance, although more male than female spiders of many species tended to be caught, this is not necessarily indicative of the actual sex ratios, because males move around to search for mates and females also move around searching for oviposition sites and so each sex may be trapped more readily at certain times in their life cycles. Similarly, it is probable that a greater proportion of those spiders that actively hunt their prey (such as the species of Pardosa and Pachygnatha) are likely to be caught than of the less mobile species that snare their prey. Nevertheless, such large numbers of some species of spiders and other arthropods were caught that a good indication of the seasonal abundance of these species was obtained.

The most important factor affecting the activity of the arthropods was the temperature. This relationship is clear when the total numbers of arthropods trapped is compared with the mean daily temperature (Fig. 16). However, when catches of individual species of arthropods were compared, large numbers were often trapped when temperatures were comparatively low (Figs. 19-23). Hence, pitfall catches, although unsatisfactory, can be used to obtain some indication of seasonal abundance. Most spiders were caught in August and fewest in December (Fig. 17) but only a few of the less numerous species showed this pattern with a single summer peak; most species differed markedly from this. The number of months in which particular species were caught ranged from only one month a year to every month (Fig. 18). These patterns of occurrence will be discussed in relation to currently available information on the phenology of spiders.

The seasonal occurrence of different species of spiders fell into several distinct patterns:

(a) Species that had a distinct summer peak population (Fig. 19). These included: Pachygnatha degeeri which has been reported to have a peak at the end of May to early June (Locket, 1975), with which our data agree; Pardosa palustris which is believed to have peak populations of males in May and females throughout spring and summer (Locket, 1975), which our data confirm; Dicymbium nigrum recorded as having adults in spring, summer and autumn (Locket & Millidge, 1953) and Agyneta decora and Alopecosa pulverulenta for which we know of no records of seasonal abundance (Fig. 20). Other less common species with peak summer populations were: Xysticus cristatus which has been stated to have adult males in spring and early summer and adult females most of the summer (Locket & Millidge, 1951), a conclusion our data fully support; Tiso vagans, the adults of which are believed to occur from spring to autumn (Locket & Millidge, 1953)---our data support this but show a distinct peak of adult males in April; Trochosa terricola, adults of which are reported throughout the year especially autumn and spring (Locket & Millidge, 1951)—our data show a distinct peak in April and May, which is much more in agreement with the reported peak in April (Locket, 1975).

FIG. 13. Relative abundance of the more common spiders caught in pitfall traps 1973-1974.

76

This work is licensed under a [Creative Commons Attribution 4.0 International License.](https://creativecommons.org/licenses/by/4.0/)

PARK GRASS PLOTS: SURFACE FAIJNA

FIG. 15. Relative abundance of beetles caught in pitfall traps.

't7

This work is licensed under a [Creative Commons Attribution 4.0 International License.](https://creativecommons.org/licenses/by/4.0/)

FIGS. 16 and 17. Numbers of arthropods trapped through the year.

FIG. 22. Percentage of total spiders caught per month.

https://doi.org/10.23637/ERADOC-1-10

pp 22

(b) Species with peak populations in autumn (Fig. 21). Three species for which we recorded distinct peak populations in autumn, Oedothorax fuscus, O. retusus and Lepthyphantes tenuis have been stated to be common all the year round (Locket & Millidge, 1953). Three other species which we caught most commonly in autumn, O. apicatus, Milleriana inerrans and Bathyphantes parvulus, are believed to be most common in spring and summer (Locket & Millidge, 1953). O. apicatus and M. inerrans are believed to be rare.

(c) Species with population peaks in winter (Fig. 22). Two species had very distinct peak catches in December; these were Bathyphantes gracilis, stated to occur throughout the year with a peak in January (Locket, 1975) and Centromerita bicolor which was recorded between December and February (Locket, 1975).

(d) Species with population peaks in late summer and early spring (Fig. 23). Three species stated to be found throughout the year (Locket & Millidge, 1953) were caught in much larger numbers at these two periods. These were Erigone dentipalpis and E. atra, both of which were very numerous, and Savignya frontata. A fourth species Meioneta beata which has been reported as scarce, and with a seasonal abundance which has not been assessed, was present in fairly large numbers.

Millipedes (Diplopoda) and centipedes (Chilopoda) (Fig. 24a) were not very numerous in the pitfall traps but were most common in spring.

Beetle larvae were trapped all the year round, most occurring in June; (Fig. 24b) many of these larvae spend much of their time in soil. Peak populations of adult beetles were trapped two months later, but the seasonal abundance of the different species differed. Tachyporus sp. was most numerous in May and June (Fig. 25) whereas peak catches of Philonthus cognatus occurred from June and August and most Pterostichus madida, P. melanaria, Agonum dorsale, and Harpalus rufipes were caught in August. These data agree with the phenology of beetles in cereal fields (Jones, Personal communication).

Peak numbers of ants were caught in June (Fig. 24c), few being active between November and March. Peak catches of flies occurred in June.

Conclusions

Although very significantly different populations of soil arthropods occurred as a result of the fertiliser treatments, particularly in relation to the amount of lime and nitrogen applied (Edwards & Lofty, 1975), the effects of the treatments on surface-living arthropods were more indirect and much less distinct. -

There have been several investigations into the composition of the soil fauna of old grassland (Edwards, 1929; Salt et al., 1948; Sheals, 1957; Dhillon and Gibson, 1962; Curry, 1969) but no detailed studies of the whole of the surface-living fauna of old grassland involving identification to species level. There have been several studies of the surface-living fauna where the arthropods have been identified to families (Southwood & van Emden, 1967; Heikinheimo & Raatikainen, 1962; Morris, 1968). Presumably, this lack of data on the surface fauna has been due to the sampling difficulties. The main sampling methods usually used have been sweep-netting and hand-collecting in quadrats, or suction sampling; usually the latter has been the most satisfactory. In the two studies where all the animals caught were identified to families (Southwood $\&$ van Emden, 1967; Heikinheimo & Raatikainen, 1962), the proportions of the different groups caught did not differ greatly from those in Park Grass (Table 7). In view of the large numbers of spiders caught in pitfall traps it must be assumed that suction sampling is relatively inefficient as a means of collecting spiders from grassland.

One striking aspect of the present study is the large number of species and individuals of spiders living in old grassland. Based on pitfall trapping they were second only to springtails in abundance. Moreover, it is interesting that species of spiders such as Pardosa palustris, P. prativaga and Troxochrus scabriculus, that usually occur in dry places (Locket & Millidge, 1951, 1953; Locket, Millidge & Merrett, 1974), and others, such as Milleriana inerrans and Leptorhoptrum robustum, that are found in wet meadows

(Locket & Millidge, 1953), and still others, such as Ceratinopsis stativa, Micrargus subaequalis, Panamomops sulcifrons and Bathyphantes parvulus, that inhabit chalk and limestone grassland (Locket, Millidge & Merrett, 1974), were all present in the small area of Park Grass, which is presumably a reflection of the vegetative density and pH values artificially created by the system of management.

Several of the species caught, some in large numbers, have been reported as very local, scarce, or rare-e.g. (numbers caught in brackets) Cicurina cicur (4), Ceratinopsis stativa (17), Micrargus subaequalis (23), Panamomops sulcifrons (36), Agyneta decora (468), Meioneta beata (215) and Lepthyphantes insignis (21)-(Locket & Millidge, 1951, 1953; Locket, Millidge & Merrett, 1974). These results suggest that intensive collecting in particular habitats is likely to show that some of the species that appear to be scarce are plentiful in some places.

Such large numbers of spiders must be exerting a considerable predator pressure on the other arthropods that inhabit grassland and we still know little oftheir food, or ecological interrelationships. It has been suggested that Collembola provide a major source of food for spiders and that mowing, raking and fertilising grassland can affect interactions between spiders and springtails, often causing spiders to increase in numbers at the expense of populations of some species of springtails (Jensen et al., 1973).

There has been considerable discussion on the influence of cutting or grazing grassland on the surface-active fauna (Southwood & van Emden, 1967; Morris, 1968; Jensen *et al.*,

TABLE 7

A comparison of numbers of selected arthropod groups collected by suction sampling

1973; Kajak, 1962). Southwood and van Emden concluded that there was a greater density of invertebrates in cut grassland than in uncut, but Morris found that there were 3.7 times as many animals in ungrazed grassland than grazed, this applying particularly to spiders. Kajak (1962) stated that mowing grass led to a reduction in numbers of spiders and even elimination of certain species. Our data would certainly support this, fewer spiders occurring on plots with short grass, and the numbers of many species dropping sharply after the second cut in August. Species that appeared to be particularly affected by cutting included Pardosa palustris, Oedothorax fuscus, O. retusus, Bathyphantes gracilis and Lepthyphantes tenuis.

The main value of the present study is to demonstrate the need for a better understanding of the role of the surface-active fauna, many of which are predators (centipedes, spiders, staphylinid and carabid beetles) in controlling pests of grassland.

TABLE 8

Number of species of arthropods trapped on the Park Grass plots (a) Species of spiders Amaurobiidae Amaurobius similis (Blackwall) 2 33, 0 ºº Thomisidae Xysticus cristatus (Clerck) 39 33, 20 99
Oxyptila sanctuaria (O.P.-Cambridge) 1 3, 0 99 Lycosidae Pardosa palustris (Linnaeus) 286 33, 108 99 Pardosa palustris (Linnaeus) 200 33, 100 \pm 7
Pardosa pullata (Clerck) 16 33, 0 92
Pardosa prativaga (L. Koch) 65 33, 12 92
Pardosa amentata (Clerck) 2 33, 4 92
Pardosa amentata (Clerck) 2 33, 4 92
Pardosa ingriceps (Tho Agelenidae Cicurina cicur (Fabricius) 2 33, 2 99
Hahnia nava (Blackwall) 9 33, 0 99 Hahnia helveola Simon 1 3, 0 ºº Theridiidae Enoplognatha thoracica (Hahn) 14 33, 0 99 Tetragnathidae Tetragnatha montana Simon 1 δ , 4 22
Pachygnatha clercki Sundevall 1 δ , 2 22 Pachygnatha degeeri Sundevall 531 33, 517 99 Fundation and the Contraction of Certified Backwall and Seventinella brevipes (Westring) $7\frac{3}{9}\frac{3}{9}\frac{1}{9}$

Walckenaera antica (Wider) $5\frac{3}{9}\frac{3}{9}\frac{1}{9}\frac{1}{9}$

Walckenaera unicornis O.P.-Cambridge 1 $\frac{3}{9}\frac{1}{$ Lynyphiidae* Micrargus subaequalis (Westring) 15 $\delta\delta$, 8 $\dot{\varphi}\dot{\varphi}$

Erigonella hiemalis (Blackwall) 15, 0 $\varphi\varphi$

Savignya frontata (Blackwall) 151 $\delta\varphi$, 50 $\varphi\varphi$

Diplocephalus cristatus (Blackwall) 0 $\delta\varphi$, 1 φ
 Porrhomma errans (Blackwall) 1δ , 2Ω Agyneta subtilis (O.P.-Cambridge) 1 $\overline{3}$, 6 $\overline{2}$
Agyneta subtilis (O.P.-Cambridge) 407 $\overline{3}$ $\overline{3}$, 61 $\overline{2}$
Meioneta rurestris (C. L. Koch) 65 $\overline{3}$ $\overline{3}$, 7 $\overline{2}$ $\overline{2}$

* A further species, Centromerus prudens (O.P.-Cambridge) δ was trapped in December 1975.

Meioneta saxatalis (Blackwall) 6 $33, 0$ 9

Meioneta beata (O.P.-Cambridge) 173 $35, 42$ 9

Centromerus sylvaticus (Blackwall) 6 $35, 0$ 9

Centromerita bicolor (Blackwall) 87 $35, 6$ 9

Centromerita bicolor (Blac Lepthyphantes insignis O.P.-Cambridge 8 33, 13 99

(b) Species of Collembola

Onychiuridae *Onychiurus ambulans* (L.) Stach.
 Onychiurus armatus (Tullb.) Gisin.
 Onychiurus edinensis Bagnall

Tullbergia denisi (Bagnall) Tullbergia callipygos Borner Tullbergia krausbaueri Borner

Poduridae (Hypogastruridae) Friesia mirabilis (Tullb.) Hypogastura denticulata (Bagnall) Willemia sp.

Isotomidae Folsomia candida (Willem) Folsomia quadrioculata (Tullb.)

Folsomides sp. Isotomodes productus (Axelson) Isotomiella minor (Schaffer)
Isotomiella minor (Schaffer) Isotoma viridis Bourlet

Entomobryidae Entomobrya nicoleti (Lubbeck)
Entomobrya nivalis (L.) Lepidocrytus cyaneus Tullb. Heteromurus nitidus (Templeton) Pseudosinella sp

Sminthuridae Bourletiella horunsis (Fitch) Bourlettiella sp.
Dicyrtomina minuta (Fabricius) Sminthurus viridis (L.) Sminthurides pumilis (Krausbauer)
Sminthurinus aureus (Lubbeck) Sminthurides elegans Cassagnau and Delamare Sminthurinus sp. Megalothorax sp.

(c) Species of Coleoptera

Carabidae Agonum dorsale (Pp.) Amara familiaris (Dufts.)
Amara lunicollis Schiodte. Demetrias atricapillus (L.) Feronia madida (F.) Feronia melanaria (Il.) Harpalus rufipes (D.G.)
Nebria brevicollis (F.)

Curculionidae Alophus triguttatus (F.) Barynotus obscurus (E.) Barypeithes pellucidus (Boh.) Otiorrhynchus singularis (L.) Sitona puncticollis Steph. Trachyphloeus aristatus Gyll.

Elateridae Agriotes lineatus (L.) Agriotes obscurus (L.) Silphidae Choleva oblonga Latr. Ptomaphagus subvillosus (Goeze) Staphylinidae Philonthus cognatus Steph. Philonthus varius (Gyll.) Quedius mesomelinus (Marsh.) Tachinus rufipes (Deg.) Tachyporus spp.

Acknowledgments

We should like to thank P. E. Lawrence of the British Museum (Natural History) for assistance with the Collembola identifications, and our colleagues, T. Lewis for helpful discussions, J. Bowden for assistance with trapping, B. A. Jones for sorting most of the catches, A. E. Whiting for preparing the diagrams and B. M. Church and J. H. A. Dunwoody for statistical advice and computations.

REFERENCES

BRENCHLEY, W. E. (1935) Park Grass Plots. Rothamsted Experimental Station. Report for 1934, 138-159

BRENCHLEY, W. E. (1969) The Park Grass Plots at Rothamsted, Harpenden: Rothamsted Experimental Station, 144 pp.
CURRY, J. P. (1969) The qualitative and quantitative composition of the fauna of an old grassland site

at Celbridge Co. Kildare. Soil Biology and Biochemistry 1, 219-227.
DHILLON, B. S. & GIBSON, N. H. E. (1962) A study of the Acarina and Collembola of agricultural

soils-1. Numbers and distribution in undisturbed grassland. Pedobiologia 1, 189-209.

EDWARDS, C. A. & LOFTY, J. R. (1975) The Invertebrate Fauna of the Park Grass Plots. I. soil Fauna. Rothamsted Experimental Station. Report for 1974, Part 2. $133 - 154.$

EDWARDS, E. E. (1929) A survey of the insect and other invertebrate fauna of permanent pasture and arable land of certain soil types at Aberystwyth. Annals of Applied Biology 16, 299-323.

HEIKINHEIMO, O. & RAATIKAINEN, M. (1962) Comparison of suction and netting methods in population investigations concerning the fauna of grass leys and cereal fields, particularly in those concerning the leafhopper, Calligypona pellucida (F.). Publications of the Finnish State Agricultural Research
Board, No. 191. 31 pp.

JENSEN, P., JACOBSON, G. L. & WILLARD, D. E. (1973) Effects of mowing and raking on collembola.

Ecology 54, 564-572.

Example 7.5.

RAIAK, A. (1962) A comparison of spider fauna in artificial and natural meadows. Zaklad. Ekol.

Polish Academy of Sciences, Warsaw 10 (1), 1–20.

LOCKET, G. H. (1975) Spiders, Leckford Record No. 3, 14 pp.

L

Society.

Morens, M. C. (1968) Differences between the invertebrate faunas of grazed and ungrazed chalk

grassland. II. The faunas of sample turves. Journal of Applied Ecology 5, 601–611.

SALT, G., HOLLICK, F. S. J., RAW,

SOUTHWOOD, T. R. E. & VAN EMDEN, H. F. (1967) A comparison of the fauna of cut and uncut grasslands. Zeitschrift für angewandte Entomologie 60, 188-198.
WILLIAMS, E. D. (1974) Changes in yield and botanical composition caused by the new liming scheme

on Park Grass. Rothamsted Experimental Station. Report for 1973, Part 2, 67-73.