This work is licensed under a Creative Commons Attribution 4.0 International License.

Thank you for using eradoc, a platform to publish electronic copies of the Rothamsted
Documents. Your requested document has been scanned from original documents. If you find
this document is not readible, or you suspect there are some problems, please let us know and
we will correct that.

Rothamsted Experimental Station

Report for 1956

1956

ROTHAMSTED
RESEARCH

Full Table of Content

The Electronic Computer at Rothamsted

M. J. R. Healy

M.]J. R. Healy (1957) The Electronic Computer at Rothamsted ; Report For 1956, pp 229 - 235 -
DOI: https://doi.org/10.23637/ERADOC-1-117

https://doi.org/10.23637/ERADOC-1-117 pp 1

http://www.era.rothamsted.ac.uk/eradoc/
http://www.era.rothamsted.ac.uk/eradoc/book/117
http://www.era.rothamsted.ac.uk/eradoc/book/117
https://creativecommons.org/licenses/by/4.0/

This work is licensed under a Creative Commons Attribution 4.0 International License.

229

THE ELECTRONIC COMPUTER
AT ROTHAMSTED

By
M. J.'R. Heary

Since a certain amount of mystery still surrounds electronic
computers—typified by the practice of referring to them as ** Giant
Brains "—it may be well to start by considering in outline just what
these computers do and how they do it. In brief, they are capable
merely of performing the simplest arithmetical operations, such as
addition, subtraction and multiplication; their essential feature is
that they carry out these operations extremely fast and completely
automatically.

Any computer can be divided into a number of parts. To begin
with, there will be some kind of input and output devices to allow
for communication with the outside world. By comparison with
the speed of carrying out arithmetical operations, these devices are
usually rather slow, and, to enable the machine to work at full speed,
the numbers it uses as data and as intermediate results will be held
in some kind of store into and out of which they can be moved at
‘“ electronic ”’ speeds. There will be an arithmetic unit or “ func-
tion box ** which, on being supplied with two numbers, will produce
their sum, difference or product, and some kind of control mechan-
ism that will call up the correct numbers successively from the store
and set the arithmetic unit to perform the correct functions on
them.

To enable a computer to carry out a given piece of arithmetic,
the latter must be broken down into a sequence of additions, sub-
tractions and multiplications. Together these form a sequence of
instructions to the machine, which is called a programme and is
also held in the store. Even a simple sum, however, requires a
large number of instructions, and various devices are resorted to in
order to get round this difficulty. The most important of these is
the machine’s rudimentary power of discrimination; ordinarily,
the machine obeys the instructions in a fixed order, but at given
points it is able to inspect some current result and to obey one or
other of two alternative instructions according as this result is zero
or not (or is negative or not). Thus we might construct a sequence
of instructions to carry out one cycle of an iterative approximation
scheme. At the end of the sequence the machine inspects the
difference between the approximation just obtained and the one
obtained in the previous cycle; if this difference is not zero (to the
order of accuracy required) it must return to an earlier instruction
and repeat the iterative cycle, while if the difference is zero it can
proceed to a different stage of the calculations.

Many calculations can be carried out by means of a repeated
cycle of instructions provided that a few of these instructions can
be modified slightly at each passage through the cycle. Thus to

https://doi.org/10.23637/ERADOC-1-117 pp 2

https://creativecommons.org/licenses/by/4.0/

This work is licensed under a Creative Commons Attribution 4.0 International License.

230

form the sum of a series of » numbers held in the store, the sequence
of instructions must carry out the following operations :

Set total to zero

~-Pick up x; from store (: =1, 2, ..., n)
| add x; to total
test for end of series
No Yes
|
, 2
Finish

At each passage through this cycle the ** pick-up ”’ instruction must
refer to a different number in the store. An ingenious device enables
the modification to be combined with a count which also provides
the basis for the final discrimination. The numbers x; are held in
locations in the store which are numbered consecutively, and the
““ pick-up "’ order is so written as to refer to the first of these loca-
tions. Before it is actually obeyed, however, a count number 7
(starting at ») is automatically added to it in such a way as to make
it refer to the i¢th location. At the end of each cycle, the count is
reduced by one and then inspected to see whether it has reached
zero; this provides the necessary discrimination, which enables the
machine to leave this part of the computation and to proceed to the
next.

Certain sequences of instructions are likely to be required in
several different places during the course of a complete programme
—for example, those for evaluating square-roots and for organizing
the input and output of information. Such a sequence of instruc-
tions is known as a sub-routine; a sub-routine, once written, can be
incorporated in any programme without the programmer having to
investigate its detailed mode of operation. The usual technique is
to supply the sub-routine, whenever it is entered, with a “ link ”
instruction, which in the simplest case is merely the first instruction
that is to be obeyed after the sub-routine has finished its task. This
“link ”’ is automatically stored by the sub-routine itself and ulti-
mately referred to in order to get back into the main programme.

The N.R.D.C.—Elliott 401 Computer

The computer used in the Statistics Department has been de-
scribed elsewhere (Lipton, 1955). In brief, it is a binary machine
(working in the scale of 2 rather than the scale of 10 used in ordinary
arithmetic) with a store containing 2,944 locations of 32 binary
digits each (this is equivalent to between nine and ten decimals, and
represents the accuracy to which normal arithmetic is carried out).
The store is a magnetically coated disc rotating at over 4,500 r.p.m.
The disc is divided into 23 tracks, each with 128 locations. Reading
a number from the store takes 0-1 msecs. and this is also the time
taken to carry out an addition or subtraction; multiplication takes
31 msecs. In addition to the main store, there are five registers,
each of 32 binary digits capacity, which have immediate access—
a number or instruction in the main store is only accessible once per

https://doi.org/10.23637/ERADOC-1-117 pp 3

https://creativecommons.org/licenses/by/4.0/

This work is licensed under a Creative Commons Attribution 4.0 International License.

231

revolution of the disc, so that in an unlucky case up to 12-8 msecs.
may be wasted in waiting for the required store-location to arrive
at the reading—writing station. For this reason, consecutive in-
structions are not placed in adjacent locations in the store, but are
spread out at the will of the programmer so that, as far as possible,
each order becomes available for reading as soon as the previous
order has been completed. To enable this to be done, each instruc-
tion specifies the location from which the next instruction is to be
drawn.

Input to the machine is by 5-hole teleprinter punched tape.
This is read by a tape-reader capable of operation at up to 200 rows
per second, which is comparable with the computing speed of the
machine. Very recently, a punched-card input has been added.
Output is either to an electric typewriter operating at 8 characters
per second or to a tape-punch, which is about three times as fast;
output tape can be printed out on standard teleprinter equipment
away from the machine.

The arithmetic and control units of the machine are built up of
some 250 plug-in units of about a dozen different types. These
carry out logical operations, and the arithmetical operations are
built up by connections between the plates. This packaged con-
struction is of immense help in the day-to-day maintenance of the
machine and in the tracing of faults.

Programming and coding

The first step in organizing a piece of computation for the
machine is to decide on the numerical methods to be employed.
These may be quite different from those which would be adopted if
the same problem was to be tackled on a desk machine. A good
human computer is capable of taking advantage of peculiarities in
the data, and of taking special action to retain accuracy at awkward
places, but he is easily bored and inevitably subject to error in
copying out intermediate results. The machine, on the other hand,
will happily allow rounding off and cancellation errors to swamp its
results, unless the programmer has taken steps to prevent this, but
will carry out repetitive tasks rapidly and accurately.

The arithmetic process has next to be broken down into a number
of logical steps, each of which can conveniently be considered in
isolation. This is particularly important with a complex programme
through which the machine may have to steer several different
paths according to the precise nature of the data. Frequently,
different parts of a large programme may perform practically
identical operations on different intermediate results. These can
conveniently be programmed as formal sub-routines.

The final stage consists in writing the actual instructions which
enable the machine to perform the required operations. On the
Rothamsted computer, each instruction specifies first a source of
information, which may be the store or an immediate access register ;
next a function, which specifies the way in which the number from
the source is to be combined with the contents of a special register
called the accumulator; and next the destination to which the result
of the previous instruction is to be sent. A further number is used
to indicate discrimination or order modification as described earlier.

https://doi.org/10.23637/ERADOC-1-117 pp 4

https://creativecommons.org/licenses/by/4.0/

This work is licensed under a Creative Commons Attribution 4.0 International License.

232

In addition, there is a timing number (in the form of a store address)
which specifies the moment at which the order is to be obeyed;
if the order contains a reference to the store, this timing address
will specify the actual location required. Finally, the order contains
the address in which the next instruction to be obeyed can be
found. As an example, an order might read

1-52 6030 1-30

1-52, location 52 on track 1, is the address of the next order. Source
6 is the main store; the number from location 1-30 is to be added
(function 0) into the accumulator, whose previous contents are to
be sent to destination 3, one of the immediate access registers.

This ““ machine language ", though fairly complex, is sufficiently
logical to be quickly mastered, and once the necessary arithmetic
has been decided upon, the process of writing the appropriate orders
is straightforward, if time-consuming. In practice, the logical
section of the orders is written first, the addresses being filled in
afterwards.

Statistical uses of the computer

The jobs handled by the computer fall into two main categories
—routine tasks which, although individually simple, arise in suffi-
cient volume to justify the writing of programmes, and more
elaborate work which is too complex or time-consuming to be a
practical proposition on desk machines.

In the first category the most important class of work is the
analysis of the results of field experiments. These are readily
handled by human computers—a fact which has contributed largely
to the development of modern statistical methods in experimenta-
tion—but the volume of work involved has become considerable
in recent years. Programmes are available for analysing random-
ized blocks (up to 126 plots), Latin squares (up to 10 x 10), random-
ized blocks with split plots (up to 128 sub-plots), 32 single-replicate
factorial experiments and 2" factorial experiments, which together
account for some 80 per cent of all experiments reaching the depart-
ment; other programmes are being developed. As an example of
the speed of operation the actual analysis of a single variate takes
about 15-30 seconds; input and output bring the total time up to
about 2 minutes. Using these programmes, experiments involving
a total of 2,500 analyses have been handled over the past two years.

A very important feature of these programmes is that they do
all the work involved in an analysis. To begin with, the figures
actually received from the field are very seldom those that are to
be analysed ; at least some conversion, say from lb. /plot to cwt. /acre,
will be required, and often more elaborate initial computation will
be called for. We use a general input routine for experimental
designs which takes care of all this preliminary data-handling, places
the required figures in the correct locations in the store and carries
out certain checks to guard against punching errors. On the output
side, the programmes are arranged to print their results in the cus-
tomary form, leaving the minimum of clerical work to be done before
the results can be dispatched to the experimenter.

https://doi.org/10.23637/ERADOC-1-117 pp5

https://creativecommons.org/licenses/by/4.0/

This work is licensed under a Creative Commons Attribution 4.0 International License.

233

Another source of routine work is probit analysis, which arises
in insecticide research and other fields. Statistically, the problem
is one of weighted regression, and the computations, though straight-
forward, are laborious and time-consuming. One of our programmes
fits a single probit line to up to 16 observed points, printing out the
equation to the probit line, the ED50 and its fiducial limits; natural
mortality and heterogeneity in the data can be allowed for, and the
same programme can without modification use the logit or angular
transformations in place of probits. A further programme fits a
bivariate probit regression, or probit plane. This useful technique
has hitherto been neglected in practice because of the tedium of the
computations involved.

Intermediate between the routine tasks and the large-scale com-
putational problems are the programmes dealing with multiple
regression. The first stage in regression calculations is the computa-
tion of sums of squares and products, and this can easily outweigh
the more sophisticated calculations that follow it. We have several
programmes for this purpose that can at will provide weighted or
unweighted means, sums of squares and products, variances and
covariances, standard deviations and correlation coefficients. These
will shortly be adapted to punched-card input, since much multi-
variate material is most easily made available on punched cards.

The next step in multiple-regression calculations involves the
inversion of a matrix and the calculation from the inverse of the
regression coefficients and their standard errors. Omne programme
will handle up to 24 variables, and inverts a 10 X 10 matrix in
about 8 minutes. Another, given the sums of squares and products
of up to 35 variables, enables the operator to select any one of these
as a dependent variable and any selection of up to 9 others as
independent variates. At each stage, the operator can add a new
independent variate to his regression equation, replace the last
independent variate added by a different one or delete one of the
earlier independent variates. In each case, the machine will re-
calculate the regression and print out the residual mean square with
its degrees of freedom and the regression coefficients with their
standard errors.

Other programmes, which, though scarcely in routine use, are
general in their application, have been devised to handle various
matrix operations. As an example, one programme will evaluate
all the latent roots and vectors of a symmetric matrix, an 8 X 8
matrix taking about 5 minutes. This problem arises in general
discriminant analysis and has been used in a recent study by this
technique of the teeth of fossil anthropoids.

A number of special problems involving heavy computations
have been tackled on the computer, and some of these may be briefly
mentioned. A large body of data from the Danish pig progeny
testing stations is being analysed for Dr. J. W. B. King (Animal
Breeding Research Organization, Edinburgh). Several different
measurements are taken on each pig, and it is required to break
down the observed variances and covariances into genetically
meaningful components. The estimation of linkage values from
human pedigree data is being undertaken for Dr. J. H. Renwick
(Galton Laboratory).

https://doi.org/10.23637/ERADOC-1-117 pp 6

https://creativecommons.org/licenses/by/4.0/

This work is licensed under a Creative Commons Attribution 4.0 International License.

234

It has been suggested that tsetse flies could be eradicated from
an area by the release of large numbers of sterilized male flies.
Practically nothing was known, however, about the numbers of
flies which would be required, or about the length of time over which
release should be continued. By setting up a mathematical model
of the tsetse population and following it through many generations
on the computer, both these points were investigated.

The feeding of dairy cattle is regulated on an empirical basis, and
it is likely that the full efficiency of the cow is not being realized.
K. L. Blaxter and H. Ruben (Hannah Dairy Research Institute)
have approached this problem by setting up a rather elaborate
mathematical model of the cow’s metabolism. Fitting this model
to observed data is an extremely arduous task, and is now being
programmed for the computer.

There are many numerical problems which, although simple in
themselves, are too time-consuming to be practical on desk machines.
A typical example is the estimation of sampling errors for different
patterns of sampling from completely known material. We have
programmed this problem for the simple case when the sampling
units form a linear sequence in space or time. The programme has
been applied to data on human dietary constituents.

An obvious application of the computer is to the construction of
mathematical tables, and several of the new tables in the fifth edition
of Statistical tables for biological, agricultural and medical research
were computed in this way. A large-scale project was the computa-
tion of tables of a generalized Beta distribution in collaboration
with G. Foster (London School of Economics).

It may have been realized that the main difficulty in employing
an electronic computer lies in the writing of programmes. The
general outlines of the code of instructions for the 401 machine have
been given above, and it will have been seen that programming is
complicated by the ““ optimum access’’ feature—each instruction
has to carry the address of the next instruction to be obeyed, and
the relative placing of the instructions can have a large effect on the
speed with which a programme will be carried out. In addition
to this the relations to each other and to the location in which the
instruction is stored of the two locations mentioned in each instruc-
tion (the timing address and the address of the next instruction)
sometimes form part of the logical content of the instruction. For
this reason, there are various conditions on the parities of the
various locations that have to be borne in mind, and also certain
delays which, if not imposed by the programmer, will cause the
machine to ‘“ waste a revolution ’’ or occasionally to perform the
wrong operation. These conditions are straightforward but rather
numerous, and form a potent source of errors when a programme is
being written. To meet this problem, we have developed an auto-
matic programming routine which enables this part of the program-
ming load to be borne by the computer itself; the programmer uses
a simplified coding to express the logical and arithmetic content of
his instructions, and the routine fills the appropriate timing, at the
same time indicating possible inconsistencies that it has detected in
the simplified code. A register of occupied store locations is printed
out, and an order tape punched ready to feed into the machine.

https://doi.org/10.23637/ERADOC-1-117 pp 7

https://creativecommons.org/licenses/by/4.0/

This work is licensed under a Creative Commons Attribution 4.0 International License.

235

This routine has been found to produce programmes whose timing is
as good as or better than the average human programmer and which
contain far fewer errors when they are tested for the first time.

A field of application which we propose to develop in the im-
mediate future is the application of the computer to sample-survey
analysis. Apart from its speed of operation, there are several points
at which the computer is expected to contribute. To begin with,
any large batch of numerical data almost inevitably contains a few
gross errors. These can have a disproportionate effect on the
results, especially on estimates of error; yet their discovery and
elimination is usually beyond the capacity of the unaided human
investigator. We have made some progress using standard punched-
card equipment, but much work remains to be done. A second task
for which the computer is well suited is the preliminary computation
of indices and other quantities on which the actual analysis will be
carried out. Then, the data on one sampling unit may specify that
x tons of some mixed fertilizer was applied to a field of y acres;
what is required is the amounts of N, P and K applied, in cwt./acre.
The full utilization of this stage will require machinery for punching
from tape on to cards. Lastly, electronic computation should lead
to improvements in the summary tables of results and to greater
efficiency in the methods of collecting information, since the fact
that some analytical technique requires elaborate numerical work
need no longer be a barrier to its use.

REFERENCES

LipTOoN, S. (1955). A note on the electronic computer at Rothamsted. Maih.
Tab., Wask. 9, 69,

https://doi.org/10.23637/ERADOC-1-117 pp 8

https://creativecommons.org/licenses/by/4.0/

