Thank you for using eradoc, a platform to publish electronic copies of the Rothamsted Documents. Your requested document has been scanned from original documents. If you find this document is not readible, or you suspect there are some problems, please let us know and we will correct that.

Potatoes

Rothamsted Research

Rothamsted Research (1938) *Potatoes ;* Report For 1937, pp 45 - 47 - DOI: https://doi.org/10.23637/ERADOC-1-69

- and is addition	19	32	19	33	19	34	
- Neal and and the	Du	Dung		Dung		Dung	
	Absent	Present	Absent	Present	Absent	Present	
Response to : Sulphate of ammonia Potash salt	$-\frac{+11.74^{1}}{+6.18^{2}}$	$+5.79^{1}$ +5.08 ² 0.690 0.498	$+2.28 + 4.90 \pm$	+0.56 +2.44	$+3.02 + 9.26 + 9.26 \pm 0.0$	$\begin{array}{r} +1.39\\ +4.38\\ 856\end{array}$	

As in the Rothamsted experiments both sulphate of ammonia and potash salt produced increases in the presence of dung, while in the absence of dung larger (in some cases considerably larger) increases were obtained.

POTATOES

For the past thirteen years experiments on the manuring of potatoes have been made at Rothamsted and Woburn and on potato growing farms in different parts of the country : some of the recent results are collected in Table XXXII.

TABLE	X	XX	II
IADLI	5 A	nn	11

Main Croj	b Potatoes.	Summary of Ex	periments	1932-37-
Mean	Yields and	Mean Increases,	Tons per	Acre

	Yield without nitrogen	Increase for N ₁ N ₂	Yield without phosphate	Increase for P ₁ P ₂	vithout potash	Increase for K ₁ K ₂
MINERAL SOILS No dung Light (1 expt.) Medium (1 expt.) Heavy (2 expts.)	11.84 12.25 10.61	+0.60 +0.84 +1.03 +1.91 +1.19 +1.47	12.42	+0.80 +1.63	12.34 12.87 11.59	$\begin{array}{c} -0.08 \\ +0.23 \\ -0.21 \end{array} \begin{array}{c} +0.03 \\ +0.85 \\ -0.08 \end{array}$
With Dung Light (2 expts.) Medium (2 expts.) Heavy (1 expt.)	7.16 10.86 10.24	$\begin{array}{r} -0.20 & -0.17 \\ +1.32 & +1.50 \\ +2.34 & +3.22 \end{array}$	11.49	+0.60 +0.32	6.98 11.55 12.07	$\begin{array}{c} -0.07 \\ +0.53 \\ +0.16 \\ -0.10 \end{array}$
FENLAND SOILS No Dung Light (6 expts.) Heavy (5 expts.)	7.01 10.11	+1.11 +1.55 +2.10 +3.13	6.96 9.92	+1.23 +1.56 +2.54 +3.26	6.16 11.00	+2.08 +2.67 +0.28 +0.46
With Dung Light (2 expts.) Heavy (1 expt.)	8.08 12.73	+1.16 +1.17 +1.59 +2.50	8.43 13.60	+0.36 $+0.93+0.55$ $+0.99$	8.09 13.49	+0.75 +1.55 +0.58 +1.29

¹ Dressings per acre: $N_1 = i \frac{1}{2}$ cwt. sulphate of ammonia (0.3 cwt. nitrogen). $N_2 = 3$ cwt. sulphate of ammonia (0.6 cwt. nitrogen). $P_1 = 4 \frac{1}{2}$ cwt. superphosphate (0.75 cwt. $P_2 O_3$). $P_2 = 9$ cwt. superphosphate (1.5 cwt. $P_2 O_3$). $K_1 = 1 \frac{1}{2}$ cwt. sulphate of potash (0.75 cwt. $K_2 O$). $K_2 = 3$ cwt. sulphate of potash (1.5 cwt. $K_2 O$).

They show that one dose of the fertilizer usually gives a good result even when farmyard manure is also supplied but the double dose may not give a sufficiently greater increase to pay for the extra manure. Nitrogen (sulphate of ammonia) has given the most consistent increases both on mineral and on fenland soils, whether dung is added or not. Phosphate and potash have given marked increases on fenland soils, greater indeed than on the mineral soils.

46

The results thus resemble those for sugar beet in that the effects of phosphatic and potassic manures vary considerably from soil to soil: attempts are being made in the Chemical Department to find some chemical method of ascertaining beforehand whether the soil is or is not likely to respond. This is well illustrated by the following pair of results obtained in our " $3 \times 3 \times 3$ " experiments, one obtained on a light, the other on a heavy fen soil; both soils responded to nitrogenous fertilizer; the light soil responded to potash but not to phosphate while the heavy soil responded to phosphate but not to potash.

TABLE XXXIIIEffect of Phosphate

Yields, tons per acre ±0.354 Heavy Soil (Little Downham, 1934) Marked response					Yields, t Light S	ons per Soil (Tho No respo	acre ±0 rney, 19 onse).970 34)
Super- phosphate	No sulphate of ammonia	Sulphate of ammonia		$\underset{\pm 0.204}{\underline{Mean}}$	No sulphate of ammonia	lphate Sulp monia of am		$\frac{\text{Mean}}{\pm 0.560}$
per acre		1½ cwt.	3 cwt.			1½ cwt.	3 cwt.	
0 41 9	10.0 13.8 14.8	12.3 15.8 16.7	12.9 16.8 18.4	11.7 15.5 16.6	6.3 5.5 8.6	7.1 8.4 7.3	9.3 9.1 8.9	7.6 7.7 8.2
$\begin{array}{c} \text{Mean} \pm 0.204 \\ \text{Mean} \pm 0.560 \end{array}$	12.9	14.9	16.0	14.6	6.8	7.6	9.1	7.8

TABLE XXXIV Effect of Potash

Yields, tons per acre ± 0.354 Heavy Soil (Little Downham, 1934) No response					Yields, tons per acre ±0.970 Light Soil (Thorney, 1934) Clear response			
Sulphate of potash, cwt.	No Sulphate of ammonia	Sulphate of ammonia		$\frac{\text{Mean}}{\pm 0.204}$	No Sulphate of ammonia	Sulphate of ammonia		$\frac{\text{Mean}}{\pm 0.560}$
per acre		1½ cwt.	3 cwt.			11 cwt.	3 cwt.	
$\begin{smallmatrix}&0\\&1\frac{1}{2}\\&3\end{smallmatrix}$	12.3 13.2 13.1	$14.5 \\ 15.4 \\ 15.0$	$15.8 \\ 16.0 \\ 16.4$	14.2 14.8 14.8	5.0 7.9 7.5	5.9 8.2 8.8	9.5 8.4 9.5	6.8 8.1 8.6
$\begin{array}{c} \text{Mean} \pm 0.204 \\ \text{Mean} \pm 0.560 \end{array}$	12.9	14.9	16.0	14.6	6.8	7.6	9.1	7.8

The contrast is shown perhaps more clearly in Table XXXV when all levels of nitrogen are grouped together so as to show only the potash and phosphate effects :—

TABLE XXXV

Yie Heavy	Yields Light	s, tons per Soil (The Potash re	$acre \pm 0$ orney, 19 esponse	.970 934)				
Sulphate of potash, cwt.	No Super- phosphate	Super- phosphate		$Mean \pm 0.204$	No Super- phosphate	Sup	Super- phosphate	
per acre		41 cwt.	9 cwt.			41 cwt.	9 cwt.	
$0 \\ 1\frac{1}{2} \\ 3$	11.3 12.1 11.8	$\begin{array}{r} 14.8 \\ 16.0 \\ 15.6 \end{array}$	16.5 16.4 17.1	14.2 14.8 14.8	7.0 8.0 7.8	6.5 8.1 8.4	6.9 8.2 9.6	6.8 8.1 8.6
$\begin{array}{c} \text{Mean} \pm 0.204 \\ \text{Mean} \pm 0.560 \end{array}$	11.7	15.5	16.6	14.6	7.6	77	8.9	7.8

Interactions. It not infrequently happens that a fertilizer acts better in presence of another than when it is used alone. Occasionally the reinforcement is very pronounced as in the following experiments on potatoes at Thorney, Isle of Ely, in 1933 :-- 47

TABLE XXXVI

Mean yield,	Addition gi	ven by sul-	Mean yield,	Addition given by sul-		
tons per	phate of am	monia, tons	tons per	phate of ammonia, tons		
acre	per	acre	acre	per acre		
	Used alone	With potassic fertilizer		Used alone	With phosphatic fertilizer	
9.00	0.43	1.72	14.52	1.05	4.00	
10.17	0.41	1.86	14.11	0.47	3.33	

The figures in the upper line are in presence of farmyard manure : those in the lower line in absence of farmyard manure.

The total number of interactions of this kind obtained up to the present (1925-1937 inclusive) is shown in Table XXXVII.

TABLE XXXVII

	Nitrogen and	Nitrogen and	Phosphate and
	potash	phosphate	potash
	interaction	interaction	interaction
Total number of experi- ments Positive interactions No interaction or negative	55 35 20	40 29 11	39 27 12

Most of the interactions, however, are not statistically significant

but all significant results are positive. *The proportion of ware.* Mr. Garner has recently collected all the results relating to the percentage of ware and finds that fertilizers have a very marked effect in raising the proportion of ware in cases where the percentage without manure is low, but not where it is high.

TABLE XXXVIII

Percentage Ware

Initial percentage			Increase due to							
(no	(no manure)		N	Р	K	Organic	Dung	NPK	expts.	
Over	90		-0.4	-1.1	+0.6	-0.3		-	9	
	80		+1.2	-1.1	+1.5	+0.7		-	34	
	70		+2.6	+3.6	+8.7	-1.0	+5.5	+4.0	29	
	60		+0.7	+6.8	+8.4	+2.8	+15.2	+4.4	29	
	50		+16.8	+5.9	+15.8	-	+25.9	+22.4	9	
Under	50	••	-	-	+20.3	-	+34.2	-	3	
Weight	ted m	ean	+2.0	+2.1	+7.6	+1.2	+15.3	+6.9	113	

Mean Effects of Nutrients and Organic Manures Grouped according to Initial Percentage Ware

KALE

Marrow stem kale is one of the most useful of fodder crops and one of the best converters of cheap fertilizer nitrogen into valuable