Thank you for using eradoc, a platform to publish electronic copies of the Rothamsted Documents. Your requested document has been scanned from original documents. If you find this document is not readible, or you suspect there are some problems, please let us know and we will correct that.

Report for 1937

Reducement Experimental Station Harpendane
Harpendane
REPORT
for
1937
Produced for the Indiana.

Stationard St

Full Table of Content

Other Experiments at Rothamsted

Rothamsted Research

Rothamsted Research (1938) *Other Experiments at Rothamsted ;* Report For 1937, pp 153 - 164 - **DOI:** https://doi.org/10.23637/ERADOC-1-69

SPRING OATS

Residual effect of dung, straw and sulphate of ammonia applied to the preceding potato crop

RO-Great Harpenden, 1937

Plan and yields in lb., grain above, straw below

					1				
1	ST N	DL	ST	DL ST	DE	DE ST	DE N	DL ST	8
	43.6	44.8	48.1	56.1	70.1	64.8	64.1	72.9	
	61.4	67.7	64.9	76.4	90.9	87.2	81.9	89.1	
	N	DE St N	I DL St N	DE	Nil	DL	St	DE St N	
	50.6	64.0	71.4	66.9	66.1	51.8	55.8	80.5	
	71.4	86.0	91.1	83.1	80.9	82.2	76.2	98.5	
	Nil	DLN	DE ST	DEN	DLN	STN	DLSTN	N	
	45.2	63.3	71.9	63.0	69.8	43.8	58.4	64.0	
	60.8	82.7	90.1	77.0	85.7	73.2	82.6	80.0	
	Nil	DE ST N	ST	N	DE	ST N	ST	DEN	
	43.2	58.0	55.9	55.1	68.1	54.3	47.3	68.6	
	59.3	82.5	76.1	70.9	84.4	79.2	67.7	93.9	
	ST N	DE N	DL ST N	DLST	DLSTN	DL	DL ST	DLN	
	42.3	50.2	59.2	58.1	69.4	28.7	42.4	62.3	
	62.2	72.3	74.3	72.4	84.6	62.3	72.1	85.7	
	DE ST	DE	DL	DLN	DE ST	DE ST N	N	Nil	
	44.2	53.7	53.7	52.4	59.1	32.5	44.4	63.9	
	67.3	70.3	72.5	67.1	79.9	64.0	68.1	83.6	

System of Replication: 4 randomised blocks of 12 plots each.

AREA OF EACH PLOT: 1/40 acre (45.5 lks. × 54.9 lks.)

TREATMENTS (applied to potatoes in 1936): 3 × 2 × 2 factorial design.

Dung: None, 15 tons per acre ploughed in in December (DE), or stored and applied in the bouts (DL).

Straw: None, 40 cwt. per acre (chaffed) (ST), ploughed in in December, except when applied with DL, for which straw and dung were mixed and stored.

Sulphate of ammonia: None, 0.4 cwt.N per acre applied in the bouts (N).

Basal Manuring (applied in 1936): 0.5 cwt. P₂O₅ per acre as superphosphate, and 1 cwt. K₂O per acre as sulphate of potash applied in the bouts.

Cultivations, etc.: Ploughed on various dates during Jan. Drilled: April 12. Sulphate of ammonia applied: April 13. Rolled: May 5. Clover sown and harrowed in: May 19. Rolled: May 29. Harvested: Aug. 17. Variety: Marvellous. Previous crop: Potatoes (See 1936 Report, p. 213).

STANDARD ERROR PER PLOT: Grain 3.39 cwt. per acre or 16.8%.

154
Summary of Results: Yields of separate treatments

		No dung	Du ploughed in	in the bouts
GRAIN No sulph. amm.	: cwt. per acre No straw Straw		23.1 21.4	16.0 20.5
Sulph. amm	No straw Straw	19.1 16.4	22.0 21.0	22.1 23.1
No sulph. amm	STRAW: cw No straw Straw	t. per acre 25.4 25.4	29.3 29.0	25.4 27.7
Sulph. amm	No straw Straw	25.9 24.6	29.0 29.6	28.7 29.7

Conclusions

The crop was a variable one and the standard error is rather large. On most plots dung, applied to the potatoes in 1936, increased the yield of oats grain by about 3.6 cwt. per acre. There was however an anomalous depression of 3.5 cwt. per acre due to dung on the plots receiving dung in the bouts but no sulphate of ammonia nor straw in 1936. This depression is statistically significant, but no explanation can be found for it.

The residual effect of sulphate of ammonia was small. Omitting the plots which were anomalously depressed, there is some indication of a small residual depression in oats grain due to straw.

POTATOES

Effect of Dung, ploughed in in January, or applied in the bouts, and of Straw, Sulphate of Ammonia, Superphosphate and Sulphate of Potash

RP-Gt. Knott, 1937

Total produce in lb. above, percentage ware below

				,		
1	DEN,P	DESt	N _s St	NoStP	NIL	DEN ₂ StK
	289	158	192	281	147	348
	90.0	88.6	88.0	91.1	84.0	94.0
	P	StK	DEN.	StPK	DLN,StP	DLN.
	168	149	322	159	387	406
	85.7	86.9	91.9	86.8	93.7	95.7
	N ₁	DLN ₂ StK	DEN ₁ StK	DEN ₁	N,StK	DLP
	160	389	212	245	158	267
	85.6	94.2	90.5	89.8	88.0	98.7
	DL	DLStPK	N ₂ PK	N ₂ K	DESTP	N,P
	279	338	379	283	227	336
	88.5	91.1	91.8	88.7	88.8	92.2
	DLN ₁ St	DEPK	DLN ₁ PK	DEN ₂ P	DLStK	DLN ₂ StPK
W	332	215	379	371	302	344
1	90.2	89.1	91.7	91.5	91.7	93.7
	DLN ₂ P	N ₁ StPK	DEN,StPK	DEN ₁ StPK	DEK	DLN,K
	435	272	376	294	202	372
	93.0	88.6	91.9	89.6	87.6	92.9
	DEN,K	N ₁ St	DLPK	DEN.K	St	DEP
	309	229	297	339	162	258
	88.8	83.8	89.7	90.8	82.1	89.9
	N ₂ StPK	DLN,StP	DLN ₁	DLStP	DEN.StP	DEStK
	340	466	337	282	350	216
	91.0	94.0	90.7	90.8	91.1	89.6
	DLN ₁ StPK	N ₁ PK	K	DEN ₁ St	N,StP	DLN,St
	403	273	188	271	270	384
	91.0	88.6	85.6	89.8	90.0	93.1
	DE	StP	DEN ₂ St	DEN ₁ PK	DLN ₁ P	N _o StK
	224	159	324	310	370	259
	88.4	83.3	91.0	90.0	92.6	89.4
	DEN ₂ PK	DEN ₁ StP	DEStPK	DLN ₂ PK	DLN,StK	PK
	422	326	244	460	380	238
	92.3	90.8	90.2	93.5	92.6	87.2
	DLN ₂ K	DLSt	N ₂	DLK	N ₁ K	N ₂ P
	418	276	266	300	224	226
37	91.0	92.2	89.1	90.8	88.6	83.2

System of Replication: 4 randomised blocks of 18 plots each. Certain interactions confounded with block differences.

AREA OF EACH PLOT (after rejecting edge bouts): 1/60 acre. Plots actually 1/40 acre (119 lks. × 21 lks.).
TREATMENTS: 3×3×2⁸ factorial design.

Dung: None, 15 tons per acre ploughed in in January (DE), or stored and applied in the bouts (DL).

Straw: None, 40 cwt. per acre (chaffed) (St), ploughed in in January, except when applied with DL for which straw and dung were mixed and stored.

Sulphate of ammonia: None, 0.4 (N_1) . 0.8 (N_2) cwt. N per acre. Superphosphate: None, 0.8 cwt. P_2O_5 per acre (P). Sulphate of potash: None, 1.6 cwt. K_2O per acre (K).

BASAL MANURING: Nil.

Cultivations, Etc.: Dung and chaff applied: Jan. 11. Ploughed: Jan. 15-Feb. 11. Spring tine harrowed: April 13. Cultivated: May 1. Rolled and harrowed: May 3. Cultivated: May 5. Rolled and cultivated: May 6. Rolled and harrowed: May 18. Ridged: May 19. Stored dung applied: May 20. Artificials applied: May 22. Potatoes planted: May 27. Harrowed ridges: June 10. Grubbed and re-ridged: June 12 and 17. Grubbed: July 28. Re-ridged: July 29. Lifted: Oct. 8 and 9. Variety: Ally. Previous crop: Wheat.

Special Note: Potatoes passed through a 13 inch riddle to determine the percentage ware.

Standard Errors per Plot: Total Produce: 0.845 tons per acre or 10.8%. Percentage ware:

1.81.

156 Summary of effects of Nitrogenous Fertilizers

Sulph.		No straw		1	Straw	
amm. (cwt. N)	No Dung		ung In the bouts	No Dung		ing In the bouts
	TATE OF THE PARTY	TOTAL PROI	OUCE: tons per	acre (+0.4	122)	
0.0	4.96	6.02	7.66	4.21	5.66	8.02
0.4	6.65	7.72	9.76	6.22	7.38	10.07
0.8	7.73	9.74	11.52	7.18	9.36	10.60
		PERCEN	TAGE WARE	(± 0.904)		
0.0	85.6	88.8	91.9	84.8	89.3	91.4
0.4	88.8	89.6	92.0	87.6	90.2	91.9
0.8	88.2	91.6	93.3	89.9	92.0	93.8

Main effects: Interactions of Dung

Dung		lph. am (cwt. N 0.4		1	raw vt.) 40		$\begin{array}{c} \text{per.} \\ \text{P}_2\text{O}_5) \\ 0.8 \end{array}$	Sulph (cwt. 0.0	. pot. K ₂ O) 1.6	Mean	Increase
			TOTA	AL PRO	ODUCE	: tons	per ac	re			
None	4.591	6.44	7.46	6.452	5.87	5.402	6.92	5.792	6.52	6.16	
Ploughed in	5.84	7.55	9.55	7.83	7.47	7.07	8.22	7.51	7.78	7.65	$+1.49^{2}$
In the bouts	7.84	9.92	11.06	9.65	9.56	9.33	9.88	9.42	9.79	9.60	$+3.44^{2}$
Mean Increase	6.09	7.97 $88^2 +$	9.36 1.39 ²	7.98	7.63 0.35 ³		8.34 .07 ³	7.57	8.03 .46 ³	7.80	
•				PERCI		E WA	RE				
None	85.24		89.0	87.55	87.4	86.65	88.3	86.55	88.4	87.5	
Ploughed in	89.0	89.9	91.8	90.0	90.5	90.1	90.4	90.1	90.4	90.2	+2.75
In the bouts	91.7	91.9	93.5	92.4	92.4	92.0	92.8	92.8	92.0	92.4	+4.95
Mean	88.6			The second second	90.1		90.5	89.8		90.0	
Increase		.45 +		+0		+	0.9^{6}	+0	.56		
St. errors: (± 0.299	$(2) \pm ($	0.244, ($^{3})\pm0.1$	99, (4) =	± 0.639 ,	$(5) \pm 0.$	522, (6)	± 0.42	6.	

Interactions of Sulphate of Ammonia with Straw and Minerals

Sulph. amm.(cwt. N)	Straw	v (cwt.)	Super. (co	wt. P ₂ O ₅) 0.8	Sulph. pot.	(cwt. K ₂ O)
10-15-39-51	7	OTAL PROD	UCE: tons p	er acre (+0.	244)	Last Time Carlo
0.0	6.21	5.96	5.81	6.37	5.82	6.36
0.4	8.04	. 7.89	7.21	8.73	7.93	8.01
0.8	9.66	9.05	8.78	9.93	8.98	9.73
		PERCEN	TAGE WARE	$\Xi \ (\pm 0.522)$		
0.0	88.8	88.5	88.0	89.3	88.4	88.9
0.4	90.1	89.9	89.3	90.7	89.9	90.1
0.8	91.0	91.9	91.4	91.5	91.1	91.9

Conclusions

Dung increased the yield of total produce by 1.5 tons per acre when ploughed in in January and by 3.4 tons per acre when stored and applied in the bouts, the difference between these two increases being significant.

The double dressing of sulphate of ammonia increased the total produce by 3.3 tons per acre, there being only a slight falling-off in effectiveness at the higher level of application. Straw produced a small but not significant decrease in yield.

Superphosphate increased total produce by 1.1 tons per acre and muriate of

potash by 0.5 tons per acre, both increases being significant.

There was a high percentage ware. The effects of the treatments were similar to those on yield, except that straw did not depress the percentage ware.

SUGAR BEET

Effect of agricultural salt and muriate of potash, ploughed in in December or broadcast in January, April or at sowing, and of dung

RS—Great Knott, 1937 Plan and yields in lb.

Roots (dirty), tops, sugar percentage and plant number in descending order

1	DNA KM,	$\mathbf{M}_{\mathbf{A}}$	M ₂	DNA KM1		NA M4	DNAKM ₁	
	653	595	596	736	808	716	548	663
	564	466	488	577	586	642	494	572
	16.50	15.95	16.01	16.76	16.50	16.16	15.72	16.24
- 1	447	456	453	482	379	432	289	426
	NA M,	DKM.	DNA M.	NA K M	KM_4	NA M	$\mathbf{K} \mathbf{M}_1$	D KM ₃
	594	695	700	686	625	479	566	581
	476	570	542	538	535	508	450	502
	16.04	16.56	16.30	16.88	16.13	15.43	16.16	15.98
	381	489	503	490	435	407	424	465
	NAKM.	KM,	D M ₁	KM ₁	DNA KM	M,	DM ₁	DKM2
	708	672	651	520	655	441	609	592
	492	552	573	454	597	502	530	518
	16.56	16.42		15.52	16.13	15.06	16.42	15.75
	468	504	478	345	400	356	446	493
		D NA M		DKM.			NAKM3	DM.
	703	749	655	578	571	667	650	614
	534	619	539	510	519	630	532	490
w	16.16	15.58			16.43			15.61
VV	495	476	424	383	420	463	528	516
1	490	410	121	909				
1	NA MA	KM,	D NA M		M ₄	\mathbf{M}_{1}		I2 NAKM4
	720	638	734	519	502	700	716	725
	538	553	596	520	472	570	594	593
1	16.33	15.87	16.65	15.75	15.90		16.53	17.14
	568	476	493	340	371	548	539	550
	D NA M	NA M.	NAKM3	DNAKM2	DKM ₄	DM ₂		D NA M ₁
	701	708	712	676	508	699	673	630
	561	567	578	601	580	616	577	560
	16.16	16.13	16.44	16.21	15.49	16.47		15.03
	504	487	537	457	390	533	506	535
	M ₁	DKM,	DKM.	D NA K M	D NA M4	NA M2		KM ₃
	660	718	728	731	667	643	682	621
	476	580	594	618	628	561	542	556
	16.42	16.33	16.82	16.50	15.64	16.56	16.42	16.30
	534	535	525	528	424	538	553	561
	NAKM,	KM,	DM.	M_3	NAKM,	NA Ma	DNAKN	I ₃ KM ₂
	658	692	655	577	498	636	746	556
	448	482	538	466	480	555	643	536
					10 17	15.81	16.56	16.01
	16.76	16.21	16.21	15.87	16.47	10.01	10.00	10.01

https://doi.org/10.23637/ERADOC-1-69

System of Replication: 4 randomised blocks of 16 plots each. Certain interactions partially confounded with block differences.

Area of Each Plot (after rejecting edge-rows): 3/170 acre. Plots actually 1/50 acre (46.6 lks. × 42.9 lks.).

42.9 lks.).

TREATMENTS: 4×2^3 factorial design.

Dung: None, 10 tons per acre ploughed in in December (D).

Agricultural salt: None, 5 cwt. per acre (NA).

Muriate of potash: None, 1.0 cwt. K₂O per acre (K).

Minerals ploughed in, in December (M₁), broadcast immediately after ploughing (M₂),

broadcast in early spring (M₃), broadcast at sowing (M₄).

BASAL MANURING: Sulphate of ammonia at the rate of 0.6 cwt. N per acre, superphosphate at
the rate of 0.5 cwt. P₂O₅ per acre.

CULTIVATIONS, ETC.: Dung and minerals (M₁) applied: Dec. 9. Ploughed: Dec. 23-28. Minerals
(M₂) applied: Jan. 9. Minerals (M₃) applied: April 3. Cultivated: April 12. Spring tine
harrowed: April 13. Tractor rolled and drag harrowed: May 1. Springtine harrowed:
May 6. Harrowed and minerals (M₄) applied: May 10. Drilled, harrowed and rolled:
May 18. Rolled: May 31. Horse hoed: June 14 and July 19. Singled: June 21-23. Hand
hoed: Aug. 5. Lifted: Nov. 29-Dec. 7. Variety: Kleinwanzleben E. Previous crop:

Wheat.

STANDARD ERRORS PER PLOT: Total sugar: 5.72 cwt. per acre or 12.5%. Tops: 0.889 tons per acre or 6.45%. Mean dirt tare: 0.135.

Effects of mineral manures

		None	Min Salt	Mur. of pot.	Both	Mean	None	Mine Salt	erals Mur. of pot.	Both	Mean
	TOTA	AL SUGA	AR: cwt.	per acre	(± 2.86)		PO	OTC /	1 11		
M_1		1	41.6	44.6	45.0	43.72	RO	12 0C	ashed):		
M ₂		42.81	50.9	42.8	48.6	47.42	-	13.26 15.54	13.88	13.68	13.61
M_3		12.0	48.2	48.2	50.6	49.02	13.32	14.82	13.37	14.83	14.58
M_4			49.3	42.0	50.2	47.22		15.48	14.68 13.07	15.26	14.92
7.								10.40	13.07	15.04	14.53
Mea		42.81	47.51	44.41	48.61	45.8	13.32	14.78	13.75	1170	14.14
Incr	ease		+4.73	+1.63	+5.83	100	20.02		+0.43	+1.38	14.14
	TOPS	: tons p	er acre (0 444)					and the same		
M,		1	13.32	13.03	12.64	1 12 005	S		PERCE		
M,		20.201	14.27	12.94	14.66	13.005	and the	15.66	16.03	16.43	16.04
M_3		13.124	14.30	13.94	14.66	13.965	16.04	16.37	16.00	16.36	16.24
M_4			15.35	14.16	14.84	14.305		16.24	16.38	16.56	16.39
			10.00	14.10	14.04	14.785		15.93	16.01	16.66	16.20
Mea	n	13.124	14.314	13.524	14.204	13.79	10.01	1000			
Incre	ease		+1.196	$+0.40^{6}$	+1.086	10.19	16.04	16.05	16.10	16.50	16.17
		Standa		-		1 65 (3)		+0.01	+0.06	+0.46	

s: (1) ± 1.43 , (2) ± 1.65 , (3) ± 2.02 , (4) ± 0.222 , (5) ± 0.256 , (6) ± 0.314 .

PLANT NUMBER: thousands per acre

200		Mir	nerals		1
	None	Salt	Mur. of pot.	Both	Mean
$M_1 \dots M_2 \dots M_3 \dots M_4 \dots$	26.8	25.8 27.0 25.8	25.6 27.4 29.1	23.6 27.3 29.2	25.0 27.2 28.0
Mean Increase	26.8	26.4	25.4	27.9	26.7
Increase		-0.4	+0.1	+0.2	

M1=Minerals ploughed in in December, M3=broadcast in early spring.

M2=broadcast immediately after ploughing. M4=broadcast at sowing.

Effect of dung and interaction of dung with minerals

100	Minerals None Salt Mur. Both of pot.	n Increase	Minerals None Salt Mur. Both of pot.	MeanIncrease
No dung Dung	TOTAL SUGAR: cwt. per acre 40.5 45.6 43.2 47.6 44.2 45.2 49.4 45.6 49.5 47.4	1 `	ROOTS (washed): tons p 12.64 14.16 13.38 14.30 13.99 15.40 14.11 15.10	13.62
	TOPS: tons per acre (± 0.314) 12.52 13.87 13.02 13.57 13.2 13.73 14.75 14.01 14.83 14.3	$\frac{4^3}{3^3} + 1.09^4$	SUGAR PERCENTAGE 15.98 16.09 16.08 16.64 16.11 16.01 16.13 16.36	16.20

Standard Errors: (1) ± 1.01 , (2) ± 1.43 , (3) ± 0.157 , (4) ± 0.222 .

PLANT NUMBER: thousands per acre

1		Mir	nerals		1	
	None	Salt	Mur. of pot.	Both	Mean	Increase
No dung Dung	25.8 27.7	26.3 26.5	26.9 26.8	27.8 26.1	26.7 26.8	+0.1

Conclusions

Minerals produced a significant increase in total sugar. The response to salt was 4.4 cwt. per acre as against 1.4 cwt. per acre for muriate of potash, though the difference between the two responses was not significant. The effects on tops were similar. The differences in sugar produced by the different methods of applying the minerals were not significant. In tops, however, the later applications gave significantly higher yields than the earlier applications.

Dung produced significant increases of 3.2 cwt. per acre in sugar and 1.1 tons per acre in tops. The increase in sugar was greater in the absence of potash than

in its presence, but not significantly so.

MANGOLDS

Effect of sulphate of ammonia, superphosphate, muriate of potash, agricultural salt and dung

RM-Great Knott, 1937

Plan and yields in lb., roots above, tops centre plant number below

1		Jieras	111 10., 100	s above,	tops cen	tre, plant	number	below
1	SKD	PD	S	K NA D	SP	D	SKNA	V
	1168	908	896	968	736	804	and the second second second second	K
	263	226	254	266	252		1204	676
	424	408	407	365		234	318	222
	121	100	401	303	340	314	336	285
	SPNAD	PK	NA	SPKNA	SPKD	P NA	SNAD	PKNAD
SW	1208	836	824	1100	776	880	1244	812
1	294	214	205	276	217	248	298	264
	347	341	335	344	247	295	304	305
	NA D	S P NA	SPKNAD	SK	SPD	SKNAD	PKNA	SPK
	972	1268	1252	848	828	1240	900	
	286	300	306	263	244			952
	365	374	405	385		310	244	270
	000	011	400	383	294	369	384	397
	PKD	P	SD	KNA	Nil	S NA	P NA	KD
-	876	740	812	728	508	1108	920	
	230	204	195	216	166			836
25	392	386	363	100000000000000000000000000000000000000		269	248	232
20		000	909	319	262	356	369	374

System of Replication: 4 randomised block of 8 plots each. Certain high order interactions

are partially confounded with block differences.

AREA OF EACH PLOT (after rejecting edge rows): 0.019444 acre. Plots actually 1/45 acre (48.5 lks. × 45.8 lks.)
TREATMENTS: 2⁵ factorial design.

Sulphate of ammonia: None, 0.6 cwt. N per acre (S).
Superphosphate: None, 0.5 cwt. P₂O₅ per acre (P).
Muriate of potash: None, 1.0 cwt. K₂O per acre (K). Agricultural salt :

None, 5 cwt. per acre (Na). None, 10 tons per acre (D). Dung:

BASAL MANURING: Nil.

BASAL MANURING: Nil.

CULTIVATIONS, ETC.: Dung applied: Dec. 9. Ploughed: Dec. 30 and 31. Cultivated: April 12. Springtine harrowed: April 13 and May 6. Manures applied: May 8. Drilled: May 18. Harrowed: May 18. Rolled: May 18 and 31. Singled: June 29 and 30. Horse hoed: July 20 and Aug. 7. Hand hoed: Aug. 6. Lifted: Oct. 29-Nov. 1. Variety Yellow Globe. Previous crop: Wheat.

STANDARD ERROR PER PLOT: Roots: 1.94 tons per acre or 9.07%.

Response to fertilisers

MEAN YIELDS: Roots: 21.40 tons; Tops: 5.77 tons; Plant number: 18.0 thousands.

	1	Differential responses									
	Mean response	Sulpha amm Absent		Du Absent		Sa Absent		Muria pota Absent l			nosphate Present
Sulphate of ammonia Dung	$egin{array}{c} +4.95 \\ +2.04 \\ +4.92 \\ +0.74 \\ +0.22 \\ \end{array}$	ROOTS: +2.88 +2.35 +0.22 +1.60	tons pe +1.19 +7.48 +1.26 -1.15	+5.80 +5.22 +0.82 +1.78	+4.11 +4.61 +0.66 -1.33	Means: +2.39 +2.34 +2.11 +0.30	± 0.686 $+7.52$ $+1.73$ -0.63 $+0.15$	$\begin{vmatrix} +4.43 \\ +2.11 \\ +6.29 \\ -0.92 \end{vmatrix}$	+5.48 +1.96 +3.54 -0.47	+6.33 +3.59 +4.99 +1.43	+3.58 +0.48 +4.84 +0.05
Sulphate of ammonia Dung	+0.90 +0.27 +0.95 +0.27 +0.06	+0.76 +0.71 +0.20 +0.14	$ \begin{array}{r} -0.22 \\ +1.19 \\ +0.33 \\ -0.03 \end{array} $	TOPS: t +1.39 - +0.67 +0.35 +0.28	+0.41 +1.24 +0.18 -0.17	+0.66 -0.02 - +0.39 +0.08	$^{+1.14}_{+0.56}$ $^{-}_{-0.15}$ $^{+0.03}$	+0.83 +0.36 +1.07 +0.31	$^{+0.96}_{+0.19}_{+0.83}$ $^{-0.20}$	+0.99 +0.49 +0.98 +0.53	+0.81 +0.05 +0.93 +0.01
Sulphate of ammonia Dung Salt Muriate of potash Superphosphate	+0.6 +0.3 -0.2 +0.5 +0.2	PL: +1.8 -0.2 +0.2 +1.7	-1.2 -0.2 +0.8 -1.3	MBER: +2.1 -0.4 +0.2 +1.1	thousa -0.9 +0.1 +0.8 -0.7	nds per +0.6 +0.1 -0.4 -0.1	+0.6 +0.6 +0.5 +0.5	$\begin{vmatrix} +0.3 \\ 0.0 \\ -0.2 \\ -1.7 \end{vmatrix}$	$^{+0.9}_{+0.6}_{-0.1}_{-0.3}$	$\begin{vmatrix} +2.1 \\ +1.2 \\ -0.4 \\ +1.0 \\ - \end{vmatrix}$	-0.9 -0.6 +0.1 0.0

Conclusions

Sulphate of ammonia and salt both gave increases of about 4.9 tons per acre in the yield of roots, while dung increased the roots by 2.0 tons per acre. There was also a significant positive interaction between the effects of sulphate of ammonia and salt, the response to each fertiliser being about 7.5 tons in the presence of the other fertiliser and 2.4 tons in its absence.

The responses in roots to muriate of potash and superphosphate were smaller and not significant.

The effects on tops were in general similar to those on roots.

BEANS

Effect of dung, nitro-chalk, superphosphate, muriate of potash and of spacing of the rows

RE—Great Knott, 1937 Plan and yields in lb., grain above, straw below

			gram above,	
	S ₁ P -	S ₁ - N - K		
	35.3 37.2	$\frac{34.6}{37.9}$	45.1 47.9	53.7 55.3
	S2 - N - K	S2 P -	S ₂ D N P	- S ₂ D K
	36.2	21.0	33.4	40.6
	37.3	24.5	38.1	47.9
	S2DN-K	S2 K	S2 - NP -	S2 D - P -
	39.3	20.1	33.9	44.0
	40.2	25.4	36.1	42.0
	S ₁ D N - K		S ₁ D - P -	S1 K
	46.1	38.4	46.7	48.0
	48.9	39.6	47.8	47.5
		S2DNPK	S2 - N	S2 D
	35.0	42.7	32.4	29.5
	36.5	39.3	32.6	31.0
	S1 - N		SIDNPE	S ₁ P K
	46.7	49.0	53.6	55.1
	44.8	47.0	51.9	50.9
7		S ₁ - NPK	S1	S ₁ D N
1	59.1	50.9	47.7	57.3
	57.4	48.6	42.8	54.7
1	$S_2D - PK$	$S_2 - NPK$	S2	S2DN
	39.0	26.8	16.0	25.0
	42.5	30.2	23.5	31.0
	S ₁ D-PK		S1 - N - K	S ₁
	47.5	41.9	36.5	33.4
	49.5	44.6	43.5	36.1
1	S2	S2DNP-		S2 - N - K
1	55.6	44.5	46.6	53.6
	53.4	46.5	46.9	47.9
1	SIDNPK	S1 K	S, D - P -	S1 - N
1	66.9	47.5	48.1	56.7
-	67.1	47.5	46.9	55.3
	S ₂ DNPK		S2 - N	S2 K
1	52.6	36.4	35.4	30.5
-	52.4	39.1	35.6	36.5
-	S ₁ P -	S1 - NPK	*	S ₁ D K
-	65.9 65.1	52.0 54.0	45.8 49.2	46.3 49.2
-	S, P -	S ₂ D N	S ₂ D K	
	43.9	27.9	26.2	S ₂ - NPK
	45.1	34.1	39.8	37.2 36.3
-	S2 PK	S, D	S, - NP-	S ₂ DN-K
	42.6	22.6	26.4	29.1
	46.9	30.4	33.6	36.4
-	S1 - NP -	S ₁ D	S ₁ D N - K	S ₁ P K
1	30.3	28.3	28.5	29.6
	00.0			

System of Replication: 16 randomised blocks of 4 plots each, spacing treatments being applied to blocks of 4 plots. Certain interactions partially confounded with block differences.

AREA OF EACH SUB-PLOT: 1/80 acre (68.7 lks. × 18.2 lks.).

TREATMENTS: 25 factorial design.

Spacing: 16 ins. (S₁), 24 ins. (S₂). Dung: None, 10 tons per acre (D).

Nitro-chalk: None, 0.4 cwt. N per acre (N).

Superphosphate: None, 0.6 cwt. P₂O₅ per acre (P). Muriate of potash: None, 1.0 cwt. K₂O per acre (K).

BASAL MANURING: Nil.

Cultivations, Etc.: Dung applied: Nov. 25. Ploughed in beans: Nov. 26. Artificials applied: Dec. 1. Nitro-chalk applied: April 12. Horse hoed: May 5 and 6. Harvested: Aug. 13. Previous crop: Wheat.

STANDARD Errors: Grain: per block: 11.9 cwt. per acre or 41.0%; per plot: 5.34 cwt. per acre or 18.4%.

Responses to treatments

Mean yields: GRAIN, 29.0 cwt.; STRAW, 30.7 cwt.

			Differential responses							
ponse			Absent				pha	te	pota	sh
GR	AIN:	ewt. per	acre (±1.89.	Means	: ±1.	34)			
-7.7^{1} +2.0 +0.4 +3.3 +2.4	$ \begin{array}{r} - \\ +2.5 \\ -0.4 \\ +2.7 \end{array} $	$+1.4 \\ +1.2 \\ +3.8$	$ \begin{array}{c c} -7.2^{2} \\ \hline 0.0 \\ +2.9^{3} \end{array} $	-8.2^{2} $+0.7$ $+3.7^{3}$	$ \begin{array}{r} -8.5^{2} \\ +1.6 \\ \hline +4.5 \end{array} $	$-6.9^{2} + 2.3 - +2.0$	$ \begin{array}{r} -8.3^{2} \\ +1.6^{3} \\ +1.6 \end{array} $	$+2.4^{3}$ -0.9	$ \begin{array}{r} +0.3 \\ -0.1 \\ +1.3^{3} \end{array} $	$+3.6 \\ +0.8$
		STRA	W : c	wt. per	racre	WY In				
-7.0 + 2.6 + 0.4 + 2.4 + 2.7	$ \begin{array}{r} +2.8 \\ +1.0 \\ +2.3 \\ +2.4 \end{array} $	$+2.5 \\ -0.2 \\ +2.4 \\ +2.9$	$ \begin{array}{c c} & -0.0 \\ + 2.5 \\ + 0.7 \end{array} $	$-0.9 \\ +2.4 \\ +4.6$	$\begin{vmatrix} +2.2 \\ -3.1 \\ +3.2 \end{vmatrix}$	+3.1 -1.6 $+2.2$	$\begin{vmatrix} +2.7 \\ +1.2 \\ -1.2 \\ +2.2 \end{vmatrix}$	$^{+2.6}_{-0.3}$	$+0.7 \\ +1.0$	$^{+4.6}_{-0.1}$
	GR7.71 -2.0 -0.4 -3.3 -2.4 -7.0 +2.6 +0.4 +2.4 +2.7	ponse 16 ins. GRAIN: 0 -7.71 - 2.0 +2.5 +0.4 +2.7 +1.8 -7.0 - 4 +2.6 +2.8 +0.4 +1.0 +2.4 +2.3 +2.7 +2.4	GRAIN: cwt. per -7.71	Ponse 16 ins. 24 ins. Absent 17.71	ponse 16 ins. 24 ins. Absent Present GRAIN: cwt. per acre (± 1.89 . -7.7\frac{1}{2}	Mean ponse Spacing losses Dung Absent Present GRAIN: cwt. per acre (± 1.89 . Means -7.71 +2.5 +1.4 +2.0 +2.4 +1.8 +3.1 -7.72 -8.22 +8.52 +1.6 -2 +1.6 -2 +1.6 -2.8 +2.93 +3.73 +4.5 +2.93 +3.73 +4.5 +2.94 +2.1 +2.0 STRAW: cwt. per acre -7.0 +2.6 +2.8 +2.5 +2.4 +1.0 -0.2 +2.6 +2.8 +2.5 -2 -2 +2.2 +2.2 +2.2 +2.2 +2.3 +2.4 +2.5 +2.4 +3.1 +2.7 +2.4 +2.9 +0.7 +4.6 +3.2	Mean ponse Spacing 16 ins. 24 ins. Dung Absent Present Absent Present GRAIN: cwt. per acre (± 1.89 . Means: ± 1 . -7.71	Mean ponse Spacing 16 ins. 24 ins. Dung Absent Present Absent Present Absent Present Present Present Present GRAIN: cwt. per acre (± 1.89 . Means: ± 1.34) ± 1.34) ± 1.34) -7.71	Mean ponse Spacing 16 ins. 24 ins. Dung Absent Present Absent Present Absent Present Pr	Mean ponse Spacing 16 ins. 24 ins. Dung Absent Present Absent Present Absent Present Present Absent Present Present Present Present Absent Present Present Absent Present Present Absent Present Present Present Present Absent Present Absent -7.71 — — — -8.32 - 7.22 — -8.42 -9.22 +8.42 +9.33 +1.66 - 9.2 -8.42 +9.33 +1.66 - 9.9 -9.11 +1.33 -9.21 +1.33 -9.22 +1.65 - 9.2 +1

Conclusions

Superphosphate produced a significant increase in yield of grain of 3.3 cwt. per acre. The increases in grain produced by dung and muriate of potash were not significant, while the response to nitro-chalk was negligible.

In half the blocks the rows were spaced 16 inches apart and in the other half 24 inches apart. The narrow spacing gave 7.7 cwt. of grain per acre more than the wide spacing, the difference being significant.

164

KALE

Effect of sulphate of ammonia, poultry manure, soot and rape dust RK-FOSTER'S, 1937 (4th year) Plan and yields in lb.

1	$\frac{\mathbf{R_1}}{327}$	N ₂ 429	M ₂ 294	M ₁ 278	M ₀ 177	R ₁ 180	R ₀ 163	N ₁ 277	
sw	$\frac{S_2}{340}$	$\begin{array}{c} \mathbf{S_1} \\ 263 \end{array}$	$\begin{array}{c}\mathbf{N_1}\\293\end{array}$	M ₀ 211	S ₀ 169	M ₁ 191	M ₂ 231	N ₂ 389	
1	R ₀ 261	S ₀ 209	R ₂ 363	N ₀ 216	R ₂ 384	S ₂ 312	N ₀	S ₁ 231	-
1	R ₀ 217	N ₂ 418	M ₁ 216	S ₁ 236	R ₀ 185	R ₂ 287	R ₁ 185	M ₁ 236	
	N ₀ 203	M ₂ 268	M ₀ 216	S ₀ 216	M ₀ 145	N ₂ 372	N ₁ 233	S ₂ 301	
41	R ₁ 235	S ₂ 330	$\frac{\mathbf{R}_2}{337}$	N ₁ 289	S ₀	N ₀ 195	S ₁	M ₂ 261	

System of Replication: 4 randomised blocks of 12 plots each.

Area of Each Plot (after rejecting edge rows): 0.025712 acre. Plots actually 0.028926 acre

(14 yds. × 10 yds.)

TREATMENTS, 1937: No nitrogen (0), and sulphate of ammonia (N) half applied in seed-bed and the remainder as a top-dressing, soot (S), poultry manure (M) and rape dust (R), applied in seed-bed at the rate of 0.4 cwt. N per acre (1), or 0.8 cwt. N per acre (2). Plots receiving treatment (0) in 1937 had treatment (2) in 1936 and vice versa. Plots receiving treatment (1) had this in both years. For N₀, S₀, M₀ and R₀ (see plan), the fertilizer symbols refer to the 1936 treatment.

Basal Manuring: All plots were made up to 1.0 cwt. P₂O₅ per acre and 1.0 cwt. K₂O per acre, using superphosphate and muriate of potash (an allowance being made for the P₂O₅ and

using superphosphate and muriate of potash (an anowance being made for the \$r_2O_5\$ and \$K_2O\$ contained in the organic manures).

Cultivations, Etc.: Ploughed: March 8-10. Spring applied: April 27. Applied first half of sulphate of ammonia: April 29. Rolled and harrowed: May 3. Seed sown: May 4. Rolled and harrowed: May 4. Horse hoed: June 3 and 21. Applied second half of sulphate of ammonia: July 2. Horse hoed: July 19. Hand hoed: July 29. Harvested: Jan. 5 and 15. Variety: Thousand head. Previous crop: Kale. (See 1936 Report, p. 223.)

STANDARD ERROR PER PLOT: 0.436 tons per acre or 9.86%.

Summary of Results : tons per acre (± 0.218)

1934 1936	wt. per acre 1935 1937	Sulph. amm.	Poultry manure	Soot	Rape	Mean (±0.109)
0.8 0.4 0.0	0.0 0.4 0.8	3.29 4.74 6.98	3.25 4.00 4.58	3.19 3.88 5.57	3.59 4.02 5.95	3.33 4.16 5.77
Mean (±	0.126)	5.00	3.94	4.21	4.52	4.42

Conclusions

The crop of kale was a poor one. The 1937 dressings produced significant increases in yield, the yield with the double dressing of sulphate of ammonia being significantly above that with any other types of fertilizer, while poultry manure gave a significantly lower yield than soot or rape dust.

There was no indication of any differences in the residual effects of the fertilizers.