Thank you for using eradoc, a platform to publish electronic copies of the Rothamsted Documents. Your requested document has been scanned from original documents. If you find this document is not readible, or you suspect there are some problems, please let us know and we will correct that.

Report for 1935

Full Table of Content

Other Experiments at Rothamsted

Rothamsted Research

Rothamsted Research (1936) *Other Experiments at Rothamsted ;* Report For 1935, pp 174 - 193 - **DOI:** https://doi.org/10.23637/ERADOC-1-67

Conclusions

On both mangolds and wheat the plots ploughed this year and last yielded significantly higher than the cultivated plots, the simared plots being intermediate. On the wheat similar differences appeared on the plots with rotating cultivations, but in the case of the mangolds the differences, though in the same direction, were much smaller.

In addition the shallow cultivations of the continuous part of the experiment gave lower yields than the deep cultivations, this difference being most marked on the cultivated plots and only small on the ploughed plots. No such difference appeared on the plots with rotating cultivations.

The yields of barley did not appear to be affected by the cultivations. There were no observable differences between nitro-chalk and cyanamide.

THREE COURSE ROTATION EXPERIMENT, ROTHAMSTED, 1933 GREEN MANURE CROPS—GREEN WEIGHTS—TONS PER ACRE

_			Manu	red 19	32-33	29.0-1	Not yet manured				
Preceding		Art'ls.	Adco	St. 1.	St. 2	Mean	Art'ls.	Adco	St. 1	St. 2	Mean
Sugar Beet	Vetches Rye	0.55 1.02	0.65 0.78	0.56 0.75	$0.70 \\ 0.92$	0.62 0.87	0.49 1.29	0.84 1.08	0.62 0.78	0.58 1.11	0.63 1.06
Potatoes	Vetches Rye	0.32 0.54	0.27 0.76	0.34 0.30	0.41 0.67	0.34 0.57	0.38 0.63	$0.35 \\ 0.47$	0.28 0.62	0.33 0.52	0.34
Barley	Vetches Rye	0.26 0.37	0.20 0.40	0.14 0.22	0.20 0.40	0.20	0.19 0.74	0.24 0.30	0.16 0.44	0.24 0.44	0.21

Note: These figures were omitted from the 1933 report and are included here for the sake of completeness.

WHEAT

Effect of sulphate of ammonia applied at five different times. RW-Gt. Harpenden, 1935.

Plan and yields in lb., grain above, straw below.

4	0	2	1	3	5
77.2	88.0	89.7	92.6	72.1	76.2
166.0	147.9	184.9	188.4	197.4	181.8
3	4	0	5	1	2
93.2	95.8	94.1	93.9	91.6	67.3
190.8	193.0	168.0	198.8	191.8	197.1
5	2	3	4	0	1
90.2	87.0	86.1	85.5	93.4	68.5
169.2	185.6	185.8	205.2	184.8	180.8
2	3	1	0	5	4
72.5	76.7	96.3	95.3	95.9	78.2
188.5	191.8	174.0	172.4	189.8	168.3
0	1	5	2	4	3
84.2	96.5	98.5	81.6	90.1	81.8
161.1	185.0	177.8	201.7	191.1	168.0
1	5	4	3	2	0
77.0	91.9	95.1	86.3	82.8	60.5
168.0	170.6	170.0	190.5	188.4	134.8

System of Replication: 6×6 Latin square.

Area of Each Plot: 1/40 acre (63.5 lks.×39.4 lks.)

Treatments: No sulphate of ammonia (0) and sulphate of ammonia at the rate of 0.4 cwt. N per acre, applied on Oct. 26 (1), Jan. 19 (2), Mar. 18 (3), Apr. 27 (4) and May 24 (5).

Cultivations, etc. Ploughed: Sept. 15-20. Harrowed: Oct. 24. Drilled: Oct. 26. Harrowed: Oct. 27. Harvested: Aug. 8 and 9. Variety: Victor. Previous crop: Beans.

Standard Errors per Plot: Grain: 2.35 cwt. per acre or 7.67%; Straw 2.63 cwt. per acre or 4.08%.

or 4.08%.

Summary of results: cwt. per acre.

autus (PO) Tu			(0.4 cwt.	f sulphate N per ac Mar. 18	re)		Mean of all N.	St.
GRAIN (±0.960) Incr. (±1.36)	30.7	31.1 +0.4	28.6 -2.1	29.5 -1.2	31.1 + 0.4	32.5 +1.8	30.6 -0.1	±0.429 ±1.05
STRAW (±1.07) Incr. (±1.51)	57.7	64.8 +7.1	68.2 +10.5	66.9 + 9.2	65.1 + 7.4	64.8 +7.1	66.0 +8.3	$\pm 0.478 \\ \pm 1.17$

Conclusions

The average response to sulphate of ammonia was significant for straw, but negligible for grain. The differences due to date of application were not significant in grain; in straw, however, where the yields rose to a maximum and fell again, the parabolic regression of yield on time of application was significant. time of application was significant.

SPRING OATS

RO-PASTURES, 1935

Soil fumigation experiment. Effect of "cymag," carbon disulphide jelly, chlordinitrobenzene and "seekay"

Plan and yields in lb., grain above, straw centre, weeds below

1
40
3
3
)
3
1
3
I TO ME
1 1 1 1 A
E CHEST
1
1
36
A

The positions of the blocks in the field were slightly different from those shown above.

System of Replication: 4 randomised blocks of 12 plots each.

AREA OF EACH PLOT: 1/80 acre (30 lks. × 41.7 lks.).

TREATMENTS: No fumigant (O), single (1) and double (2) dressings of "cymag" (CM), carbon disulphide jelly (S), chlordinitrobenzene (N) and "seekay" (CK), at the following rates of application per acre for the single dressing: 1 CM, 7.5 cwt.; 1 S, 24.3 cwt.; 1 N, 2.0 cwt. and 1 CK, 5.0 cwt.

BASAL MANURING: 1 cwt. sulphate of ammonia per acre.

CULTIVATIONS: Ploughed: March 21 and 22. Fumigants ploughed in. Harrowed:

March 25 and 26. Rolled: March 26. Drilled: March 26. Harrowed: March 27. Rolled:

March 27. Harrowed: May 3. Rolled: May 3. Harvested: August 9. Variety: Marvellous.

Previous crop: Spring oats.

Special Note: The ratio of weeds to total oats was determined by sampling at harvesting,

two random samples being taken per plot.

STANDARD ERRORS PER PLOT: Grain: 3.38 cwt. per acre or 28.5%; straw: 6.17 cwt. per acre or 30.4%; weeds: 5.07 cwt. per acre.

Summary of Results

	(±1	RAIN: cw 1.69. Mea	vt. per acr	e 19)	ST	TRAW: cwt. per acre			
	Chlor- dinitro- benzene	Carbon disulph- ide jelly		"Seekay"	Chlor- dinitro- benzene	Carbon disulph- ide jelly	"Cymag"	"Seekay	
None		9	0.61			10	-		
Single	6.5	14.9	1 15.8	Nil	12.5	27.0	26.6	NT'1	
Double	6.6	17.8	18.3	Nil	13.6	28.7	32.6	Nil Nil	
Mean of single and double	6.6	16.4	17.0	Nil	13.0	27.8	29.6	Nil	

STANDARD Error: (1) ± 0.845 . No single standard error is applicable to the straw yields.

	W	WEEDS : cwt. per acre							
	Chlor- dinitro- benzene	Carbon disulph- ide jelly	"Cymag"	"Seekay"					
None	26.3								
Single Double	11.4 4.4	14.6 7.8	11.9	Nil Nil					
Mean of single and double	7.9	11.2	8.4	Nil					

Conclusions

Carbon disulphide jelly and "cymag" produced significant increases in the yield of grain, "cymag" giving slightly, but not significantly, higher yields than carbon disulphide jelly. In neither case was the falling-off in response at the higher level of dressing significant. The responses were presumably due in part at least to nitrogen, the single dressings of carbon disulphide jelly and "cymag" being equivalent to 37 and 87 lb. nitrogen per acre respectively. Chlordinitrobenzene significantly decreased the yield, but there was no apparent difference between the effects of the single and double dressings. There was practically no crop on the plots receiving "seekay," due to the short interval between application of the fumigants and the drilling of the seed.

No relation was found between the yields and the numbers of cysts at the second eelworm count after eliminating treatment effects.

The results for straw were similar to those for grain.

All fumigants produced large decreases in the weight of weeds, with a further decrease with the double dressing. The crop was unusually weedy.

M

178 Plan and numbers of cysts per 400 gms. of soil, first count above, second below

	0	2CK	1N	1CM	2CM	28	2CK	O 134
-	269	283	252	212	95 199	127 166	80 142	590
	466	280	398	386	199	100	142	000
	1S	0	0	2CM	1CK	1N	1CM	0
	138	100	197	263	107	89	41	74
	194	219	421	379	236	332	176	137
	2S	1CK	0	2N	0	0	2N	1S
	282	230	216	145	88	25	42	62
	372	256	708	304	356	212	308	221
F	1CK	0	18	2CK	2CK	0	1CK	1CM
-	124	211	194	222	193	209	109	153
	268	505	433	408	292	352	132	454
-	0	2N	2S	1N	0	2N	2S	0
	102	193	128	42	29	9	17	19
	363	561	311	222	254	92	28	106
	2CM	0	1CM	0	1S	1N	0	2CM
	162	191	107	67	23	19	44	48
21	365	563	415	338	80	114	268	298

Note: First count: Mar. 8. Second count: Oct. 14. Two random samples of about 100 gms. of soil each were taken per half plot.

Standard Errors per Plot (400 gms. of soil): First count: sampling error 28.1, or 21.9%. Experimental error 58.1 or 45.2%. Second count: sampling error 74.3, or 24.3%. Experimental error: 123.0, or 40.2%. Second count adjusted for first count: experimental error 84.4, or 27.6%.

Summary of results

		Second count, adjusted for first count (±42.2. Means: ±29.8) Carbon									
	Chlordini- trobenzene	disulphide jelly	"Cymag"	"Seekay"							
None	3741										
Single	310	270	358	201							
Double	365	203	289	178							
Mean of single and double	338	236	324	190							

STANDARD ERROR (:) $(1) \pm 21.1$.

Conclusions

Carbon disulphide jelly and "seekay" produced significant decreases in the number of cysts, the falling-off in the decrease at the higher level of dressing being small for carbon disulphide jelly and not quite significant for "seekay." The decreases due to chlordinitrobenzene and "cymag" were not significant and were significantly less than those due to the other two functions. than those due to the other two fumigants.

POTATOES

Effect of dung ploughed in and applied in the bouts, and of sulphate of ammonia and minerals broadcast before bouting and applied in the bouts.

RP—Little Hoos, 1935

Total produce in lb. above, percentage ware below

1	1 1 1000	II I	1	II I		12
Dp A, -A	Dp A. Dp A.	Dp A2 Db A2	- A. Db A.	- A Dn A	Db A, -A,	12
N — PE	_ PK	- N -	- PK	_ 1 DP 11	N PK — PK	
284 216	272 201	174 269	154 218	120 218	187 167	
81.7 69.9	75.2 74.9	71.3 77.1	57.5 72.7	54.6 73.2	69.5 62.3	
Dh A Do A	Dh A A	1 5 4	DI 1 DI 1			
Db A ₂ Dp A	Db A ₂ A ₁	N PK N PK	DD A ₁ DD A ₂	Dp A ₁ Db A ₁	Db A ₂ Dp A ₂	
232 326	418 130	293 314	283 249	250 204	N — N — 262 221	
N 76.3 82.8	82.8 58.8	72.4 78.0	76.3 76.3	79.0 74.8	78.4 71.0	
			10.0	11.0	70.1	
\wedge Db A_1 — A		$\mathbf{Dp} \ \mathbf{A}_1 - \mathbf{A}_1$	$Dp A_1 - A_2$	Dp A2 Db A2	- A1 - A2	
N -N PK	— — PK	N -N -	— PK — —	- PK $-$ PK	N -N PK	
300 337	214 280	260 135	212 141	226 248	132 288	
78.2 78.9	68.0 77.1	77.5 50.7	71.9 55.3	71.7 75.4	45.4 70.0	
Db A, Dp A	A Dn A	Dp A ₂ Dp A ₁	Do A Db A	Dh A Dh A	A D A	
N - N PK		N - N PK	- $ N$ $-$	- PKN -	$-A_1$ Dp A_2	
298 322	112 206	256 260	171 274	281 355	128 202	
79.2 80.9	42.8 77.7	76.2 76.5	70.5 74.1	77.9 81.1	43.4 71.0	
Dp A ₁ Db A	1	Dp A ₂ Db A ₁		Dp A ₂ Db A ₂	$-A_2-A_1$	
PK	N PK		PK	N PK N PK		
75.9 73.6	129 296 54.6 77.7	198 217 72,2 69,1	83 210	369 402	90 245	
10.0 13.0	34.0 11.1	72.2 69.1	36.1 68.6	82.6 83.4	28.9 72.2	
- A, Db A	$-A_1$ Dp A_1	- A. Db A.	Db A ₂ — A ₂	Dn A A.	Db A ₂ Dp A ₁	
PK PK		N PK N PK	N -	N - PK	- $ -$	
195 307	275 267	261 401	252 108	296 218	277 265	
71.8 83.1	75.3 83.9	74.9 82.5	75.2 38.0	81.2 64.0	77.4 74.7	
61	10.0	11.0 02.0	10.2 00.0	01.2 04.0	11.4 14.1	

System of Replication: 6 randomised blocks of 12 plots each. Certain high order interactions partially confounded with block differences.

AREA OF EACH PLOT: 1/50 acre (63.5 lks. × 31.5 lks., 9 rows per plot, of which the 7 middle rows were harvested).

Cultivations, etc.: Dung applied to Dp plots: Feb. 19. Ploughed: Feb. 19-22. Artificials applied to A₁ plots: March 25. Tractor cultivated: March 26. Horse cultivated: March 27. Horse rolled: April 1. Ridged: April 2 and 3. Dung applied to Db plots: April 4. Applied artificials to A₂ plots: April 12. Potatoes planted: April 13-15. Rolled and harrowed ridges: May 7. Harrowed ridges: May 16. Re-ridged: May 24. Grubbed: June 25. Hand-hoed: July 10-11. Earthed up: July 13-14. Lifted: October 16-18. Variety: Ally. Previous crop: Wheat. Potatoes passed through a 1\frac{3}{4} inch riddle to determine the percentage ware.

Special Note: The potatoes were stored in a clamp from harvest till February, the different replicates of the treatments being bulked and arranged in random order in the clamp.

STANDARD ERRORS PER PLOT: Total produce: 0.660 tons per acre or 9.67%; Percentage ware: 3.36.

180
Summary of Results: block effects eliminated

		No d	ung.	Du	ng.
		No super	Super and	No super or mur.pot.	Super and mur. pot.
No sulph. amm.	TOTAL PRODUC Artificials broadcast before bouting	E: tons pe	5.361 5.751	6.183	6.78 ² 7.42 ²
Sulph. amm.	Artificials broadcast before bouting Artificials in the bouts	4.02 ¹ 2.75 ¹	7.26 ¹ 9.00 ¹	8.14 ² 7.66 ²	7.91 ² 10.41 ²
No sulph. amm.	PERCENTAL Artificials broadcast before bouting	GE WARE 52.05	63.8 ⁴ 67.5 ⁴	74.16	74.0 ⁵ 76.2 ⁵
Sulph. amm.	Artificials broadcast before bouting	52.2 ⁴ 36.0 ⁴	73.5 ⁴ 74.4 ⁴	78.9 ⁵ 77.7 ⁵	77.4 ⁵ 81.2 ⁵

STANDARD Errors: (1) ± 0.381 , (2) ± 0.269 , (3) ± 0.190 , (4) ± 1.94 , (5) ± 1.37 , (6) ± 0.970 . These standard errors apply to comparisons which are not confounded.

Effect of time of application of dung

	No Artifi- cials	Sulph. b'cast before bouting	in the bouts	Super mur. b'cast before bouting		Sulph. super an po b'cast before bouting	nd mur.	Mean
		bouting	Douts	bouting	Douts	bouting	Douts	
100	TOTAL	PRODUC	CE: tons	per acre	(± 0.381))		
Dung ploughed in		7.87	7.28	6.59	6.66	8.00	9.61	7.15 ²
Dung in the bouts	6.76^{1}	8.89	7.93	7.44	7.69	7.33	11.68	8.062
Difference	$+1.16^{3}$	+1.024	+0.654	+0.854	+1.034	-0.67^{4}	+2.074	+0.91
conditional and an entire	P	ERCENT	AGE WA	RE: (±	1.94)		2010000	-11
Dung ploughed in	73.15	80.9	76.3	74.2	73.0	79.4	80.5	1 76.36
Dung in the bouts	75.05	77.8	78.2	74.7	78.3	74.5	82.9	77.06
Difference	+1.97	-3.1 ⁸	+1.98	+0.58	+5.38	-4.98	+2.48	+0.7

STANDARD ERRORS: (1) ± 0.269 , (2) ± 0.135 , (3) ± 0.381 , (4) ± 0.539 , (5) ± 1.37 , (6) ± 0.686 , (7) ± 1.94 , (8) ± 2.74 .

Conclusions: Yields

Dung applied in the bouts gave consistently 0.9 tons per acre more than dung ploughed in (in November).

There was no response to sulphate of ammonia applied alone, but in the presence of phosphate and potash or dung or both there was a response of 2.1 tons per acre.

In addition to producing a response to sulphate of ammonia, dung gave increases of 3.4 tons per acre in the absence of potash and phosphate and 1.3 tons per acre in their presence.

Sulphate of ammonia, in the complete fertiliser, gave a larger response when applied in the bouts than when broadcast before bouting, the increases being 3.1 and 1.9 tons per acre respectively. This was the only large effect of time of application of the artificials.

The response to potash and phosphate depended on the other manures present in the way indicated above; in particular the response was 3.2 tons per acre in the absence of dung, and 1.1 tons per acre in the presence of dung, and was greater when the potash and phosphate were applied in the bouts than when they were broadcast before bouting.

The effects of the treatments on percentage ware were in general similar to those on yield.

Summary of results: effect of storing in clamp

		. carried of storing in champ						
				ung.	Du			
	Artificials.				No super			
THE REAL PROPERTY.			or mur.pot.	mur. pot.	or mur.pot.	mur. pot.		
			Percentage loss in weight after storing.					
No sulph. amm.	Broadcast before bouting In the bouts	::	4.8	6.3 2.4	4.4	4.4 5.5		
Sulph. amm.	Broadcast before bouting		1.5	3.8	2.2	7.2		
There is an	In the bouts		1.6	1.2	6.8	6.4		
			Perce	ntage good	after stor	ring.		
No sulph.amm.	Broadcast before bouting		95.2	90.4	92.2	94.4		
	In the bouts	• •		94.1	02.2	91.5		
Sulph. amm.	Broadcast before bouting		94.3	90.6	93.3	87.8		
	In the bouts		98.5	95.7	94.7	93.8		

Effect of time of application of dung

	No Artifi- cials	Sulph. b'cast before bouting	in the bouts	Super mur. b'cast before bouting		Sulph. super an po b'cast before bouting	nd mur.	Mean			
		Percentage loss in weight after storing.									
Dung ploughed in	5.4	3.2	8.5	4.5	6.9	7.4	8.3	6.2			
Dung in the bouts	3.3	1.2	5.2	4.4	4.1	7.0	4.4	4.1			
Difference	-2.1	-2.0	-3.3	-0.1	-2.8	-0.4	-3.9	-2.1			
			Percent	age good	after sto	ring.	114				
Dung ploughed in	93.4	93.6	94.6	94.9	94.3	90.2	95.0	93.7			
Dung in the bouts	91.0	93.0	94.8	93.8	88.7	85.4	92.5	91.3			
Difference	-2.4	-0.6	+0.2	-1.1	-5.6	-4.8	-2.5	-2.4			

Conclusions: Storing

The average loss in weight on storing was 4 per cent. The loss was about 2 per cent. greater where dung was ploughed in than where it was applied in the bouts. There were no other treatment effects.

About 7 per cent. of the potatoes went bad on storing. Dung increased the percentage going bad, by 2 per cent. the increase being consistently greater with dung in the bouts than with dung ploughed in. Minerals increased the percentage going bad by 0.8 per cent. Sulphate of ammonia had on the average little effect, though there are indications that the percentage going bad was higher when the sulphate of ammonia was broadcast before bouting than when it was applied in the bouts.

SUGAR BEET

Effect of sowing date, spacing of rows and of sulphate of ammonia RS-LITTLE HOOS, 1935 Plan and yields in lb.

				D .	-	-		310	140		-			T) .	
				Root	s Tops	s Sugar					Roo	ts lop	s Sugar		
				(dirty	y)	per	num-				(Dir	ty)	per	num-	
						cent.	ber						cent.	ber	
i								i		white the same of			- 12		
27	1	C	N ₂	566	348	16.70	833		9	S20 N1	522	359	16.79	527	54
		S15	NT 2					THE REAL PROPERTY.	0						-
	3	S10	112	537	482	16.50	1,378		2	S ₁₀ —	579	371	16.88	1,333	
	1	S10	N ₁	553	314	17.00	1,420	9,971	2 2 1	S15 N2	542	372	16.39	764	
	3	S15	_	362	244	17.05	914			S10 N2	686	444	16.18	1,377	
	1	S 20	-	398	220	16.50	558		3	S ₁₅ —	434	286	16.88	875	
	2	San	N ₂	531	400	16.79	507		1	S15 N1	626	382	16.53	799	
	2	S15	N ₁	493	292	17.05	789		1	S20 -	489	257	16.21	541	
	2 2 3	S10	_	501	294	16.85	1,171		3	S20 N2	458	432	16.39	530	
	3	S 20	N,	425	353	16.36	510		3	S10 N1	622	453	16.39	1,424	
		~ 20	1		000	10.00	010			2101		100			
	3	S10	N,	522	359	16.53	1,391		3	S ₁₅ N ₁	585	426	16.43	855	
	1	S10		486	265	16.79	1,453		3	S10 N2	688	648	16.42	1,399	
	1	S15		500	284	17.05	878	E	2	S20 N2	566	368	16.30	542	
	î	S 20	N ₂	527	342	15.98	566	1	ī	S ₁₅ N ₂	656	436	16.10	796	
		S 20	N ₂	636	466	16.79	1,315		3	S ₂₀ -	486	324	17.08	539	
	2 3	S10 S20		477	333	16.56	513		1	S ₂₀ N ₁	520	298	16.36	520	
	3	S 20	NI	486					1	S 20 11	566	303	16.47	1,351	
	0	S15	N ₂		486	16.59	783			S10 -					
	2 2	S15	-	448	312	16.62	836		2	S10 N1	594	344	16.33	1,348	201
	2	S 20	N_1	499	300	16.44	531		2	S ₁₅ -	487	272	16.44	802	
	3	S 20	N ₂	464	396	16.21	526		2	S10 N2	754	486	16.44	1,286	= 0
	3	S 20		460	392	16.59	1,441	nge	3	$S_{15}^{10} N_2$	578	487	16.42	859	
	2	S10	N	516	355	16.47			3	S ₁₀ —	524	358	16.27	1,445	
	3	S10	Nı				1,361				393	220	16.04	744	
		S15	N ₁	458	378	16.96	871		2	S15 N1					
	1	S15	-	467	261	16.30	843		1	S20 N2	484	248	16.56	549	
	2	315	INO	520	424	16.13	688		1	S ₁₅ -	515	276	16.33	821	
	2	S 20	_	440	260	16.65	556		2	D ₂₀ —	424	234	17.05	542	
	1	S10	N ₂	714	538	16.85	1,428		3	520 N1	458	328	16.68	578	
1	1	S 20	N,	468	313	16.70	586		1	S10 N1	624	344	16.27	1,277	28
			-							TOWNS OF					
	_		_					7-1	-						

System of Replication: 6 randomised blocks of 9 plots each. Certain second order interactions partially confounded with block differences.

AREA OF EACH PLOT (after rejecting edge rows): 10-inch spacing: 0.02083 acre; 15-inch spacing: 0.01875 acre; 20-inch spacing: 0.01667 acre. Plots actually 15.2 lks. × 164.5 lks. rows. Treatments: All combinations of:

> Sowing dates Sulph. amm. Spacing $\begin{cases} \text{March 15 (1)} \\ \text{April 18 (2)} \\ \text{May 16 (3)} \end{cases} \times \begin{cases} \text{10-inch (S_{10})} \\ \text{15-inch (S_{15})} \\ \text{20-inch (S_{20})} \end{cases} \times \begin{cases} \text{None (-)} \\ (0.3 \text{ cwt. N) (N_1)} \\ (0.6 \text{ cwt. N) (N_2)} \end{cases}$

Basal Manuring: 10 tons dung per acre. Superphosphate at the rate of 0.5 cwt. P₂O₅ per acre and 30% potash manure salt at the rate of 1.0 cwt. K₂O per acre.

Cultivations, etc.: Applied basal dressing of artificials: January 21. Ploughed: January 2122. Harrowed and sulphate of ammonia applied to 1st sowing: March 14. Harrowed, rolled and drilled, 1st sowing: March 15. Rolled: March 16. Harrowed, 2nd sowing: April 13. Applied sulphate of ammonia to 2nd sowing: April 15. Harrowed: April 17. Harrowed, rolled and drilled, 2nd sowing: April 18. Harrowed; rolled, sulphate of ammonia applied and drilled, 2nd sowing: April 18. Harrowed, rolled, sulphate of ammonia applied and drilled, 3rd sowing: May 16. Harrowed and rolled: May 17. Hoed narrow and wide rows: May 18. Hoed narrow rows: May 23. Singled, 1st sowing: May 30. Singled, 2nd sowing: June 11-17. Hoed all wide rows: June 14. Singled, 3rd sowing: June 24-July 4. Hoed: July 8-19. Lifted: November 8-23. Variety: Kleinwanzleben E. Previous crop: Wheat Wheat.

STANDARD ERRORS PER PLOT: Roots (washed): 0.873 tons per acre or 7.85%. Tops: 0.977 tons per acre or 11.5%. Sugar percentage: 0.288. Plant number: 2.45 thousands per acre or 5.01%. Mean dirt tare: 10 inch spacing: 0.122; 15 inch spacing: 0.116; 20 inch spacing: 0.101. There was a severe attack of Heart Rot. See p. 25.

183

Yields of Separate Treatments (block effects eliminated) ROOTS (washed): tons per acre

Sowing		Sulph.	amm. p None	er acre	Sulph. amm. per acre 0.3 cwt. N.			Sulph. amm. per acre 0.6 cwt. N.			
date		Spa 10	cing (in	ches)	Spa 10	cing (inc	ches)	Spa 10	cing (inc	hes)	
March 15		9.75	10.42	10.74	11.37	11.91	11.52	13.01	12.71	12.49	
April 18 May 16		10.22 9.35	9.69 8.43	10.48	10.08	9.63	12.36 10.93	13.39	11.02	13.06	

Main effects. Interactions of sulphate of ammonia with spacing and sowing dates.

	Spa	cing (incl	nes)	So	wing Dat	es		
	10	15	20	Mar. 15	Apl. 18	May 16	Mean	Increase
ROOTS (was	shed): to	ns per ac	re (±0.35	6. Means	s: +0.20	06. Incre	ases: ±	0.291)
0.0 cwt. N	9.77	9.51		10.30				1
0.3 cwt. N	10.76	10.72	11.60	11.60	10.69	10.79	11.03	+0.97
0.6 cwt. N	12.59	11.75	12.16	12.74	12.49	11.27	12.17	+1.14
Mean	11.04	10.66	11.55	11.55	11.10	10.60	11.08	
Increase		-0.38	+0.51	mahini	-0.45	-0.95	etta sinte	E 44 10
TOPS: to	ns per a	cre (+0.	399. Med	ins: ±0	.230. In	creases :	$\pm 0.325)$	
0.0 cwt. N	7.08	6.55	7.27	6.29	6.90	7.72	6.97	
0.3 cwt. N	7.75	7.86	8.71	7.72	7.47	9.13	8.11	+1.14
0.6 cwt. N	10.94	10.13	9.76	9.25	9.99	11.59	10.28	+2.17
Mean	8.59	8.18	8.58	7.75	8.12	9.48	8.45	
Increase		-0.41	-0.01		+0.37	+1.73		
SUGAR PE	RCENTA	GE (+0.	118. Med	ans: +0	.0681. 1	ncreases :	+0.096	(3)
0.0 cwt. N	16.64	16.60	16.68	16.44		16.74	16.64	1
0.3 cwt. N	16.50	16.68	16.56	16.65	16.52	16.56	16.58	-0.06
0.6 cwt. N	16.53	16.39	16.37	16.40	16.47	16.44	16.44	-0.14
Mean	16.56	16.56	16.54	16.50	16.58	16.58	16.55	
Increase		0.00	-0.02		+0.08	+0.08		
		TOTA	L SUGAI	R: cwt. p	er acre	lI	1	
0.0 cwt. N	32.5	31.5	36.3	33.9	33.9	32.6	33.5	1
0.3 cwt. N	35.5	35.8	38.4	38.6	35.3	35.7	36.5	+3.0
0.6 cwt. N	41.6	38.5	39.8	41.8	41.2	37.0	40.0	+3.5
Mean	36.5	35.3	38.2	38.1	36.8	35.1	36.7	
Increase		-1.2	+1.7		-1.3	-3.0		
PLANT NUMB	ER: thou	isands per	r acre (+)	1.00. Mea	ns:+0.	577. Incr	reases: +	0.816)
0.0 cwt. N	65.6	45.2	32.5	48.2	45.6	49.5	47.8	1
0.3 cwt. N	65.8	43.9	32.5	47.5	45.9	48.7	47.4	-0.4
0.6 cwt. N	65.5	42.0	32.2	48.0	44.2	47.4	46.5	0.9
Mean	65.6	43.7	32.4	47.9	45.2	48.5	47.2	
Increase		-21.9	-33.2	ES PART S	-2.7	+0.6		

184
Interaction of Spacing and Sowing Dates

Sowing Date	10 S _I	pacing (inche	es)	10 Sp	pacing (inch	es) 20
n nor man lette	ROOTS (w	is per acre	TOPS	S: tons per (±0.399)	acre	
March 15 April 18 May 16	11.38 11.23 10.52	11.68 10.11 10.18	11.58 11.97 11.11	7.88 8.27 9.61	7.88 7.51 9.15	7.49 8.58 9.67
S	UGAR PER	:(±0.118)	TOTAL SI	UGAR: cw	t. per acre	
March 15 April 18 May 16	16.59 16.63 16.45	16.50 16.44 16.72	16.38 16.67 16.55	37.7 37.3 34.6	38.6 33.3 34.0	38.0 39.8 36.8

Sowing Date	10	Spacing (inches)	20
PLANT March 15	NUMBER:	thousands per acre	(±1.00) 33.2
April 18	62.5	41.1	32.0
May 16	67.8	45.8	32.0

Conclusions: Yields

Sulphate of ammonia significantly increased the yields of roots and tops and significantly decreased the sugar percentage, the net result being an increase in total sugar for the double dressing (0.6 cwt. N. per acre) of 6.5 cwt. per acre. The response in roots decreased as the width of spacing increased, the interaction between sulphate of ammonia and spacing being significant.

Apart from this and the effect on plant number, spacing produced no significant

There was a significant reduction in roots and a significant increase in tops with the later sowing dates, but no effect on sugar percentage. Plant number was significantly lower at the second sowing than at the first or last.

Bolters: First sowing date

		pacing (inch	es)		1
	10	15	20	Mean	Increase
	,	PERCEN	TAGE OF I	BOLTERS	
0.0 cwt. N	 10.07	12.96	15.86	12.96	
0.3 cwt. N	 12.94	19.98	27.12	20.01	+7.05
0.6 cwt. N	 21.58	21.41	23.89	22.29	+2.28
Mean	 14.86	18.12	22.29	18.42	1
Increase		+3.26	+4.17		

		Average sugar percentage	Average weight of root lb.
Bolters	 	16.15	0.476
Normal	 	16.49	0.613

Conclusions: Bolters

About 18 per cent. of the plants sown at the earliest date, March 15, bolted. There was practically no bolting with the later sowings.

The average weight of a bolter was about 20 per cent. smaller than that of a good root. The sugar percentage was also slightly smaller. Sulphate of ammonia increased the percentage of bolters. The percentage also increased as the width of spacing increased.

SUGAR BEET

Effects of agricultural salt, applied before winter ploughing and at sowing, of dung, of additional heavy rolling of the seed-bed, and of normal and intensive inter-row cultivation

RS—Little Hoos, 1935 Plan and yields in lb.

				-	Iuii uii	u 31	cius in ib.					
		Roots (dirty)	Tops	Sugar per cent.	Plant num- ber			Roots (dirty)	Top	s Sugar per cent.	num-	
78	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	361 588 507 519 498 526 526 519 584 557 632 522	370 444 368 404 350 354 374 418 356 426 443	16.36 16.83 17.62 17.26 16.82 17.51 17.35 17.48 17.48 17.52 17.26 16.84	387 571 567 601 517 563 525 527 576 527 583 529	E↑	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	535 502 436 494 401 469 461 515 522 458 423 544	436 479 394 457 390 406 402 390 371 355 375 418	16.91 15.98 16.44 16.33 17.14 16.73 16.65 17.11 17.14 17.05 17.02 16.50	530 465 424 447 490 509 519 580 598 529 511 581	102
55	Na ₂ — C Na ₁ D — C Na ₁ D R C Na ₁ D R C Na ₁ D R C Na ₁ — R C Na ₁ — R C Na ₂ D R C Na ₂ D R C	531 594 635 556 627 599 534 539 526 591 555 535	471 444 417 330 384 386 332 326 376 378 318 404	17.34 17.18 17.48 16.96 17.18 17.46 17.70 17.12 17.34 17.72 17.40 16.89	508 529 607 466 591 556 520 486 455 529 566 514		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	497 522 565 415 529 451 488 524 482 441 486	346 433 416 317 372 370 334 354 340 304 370 365	17.02 16.79 16.96 16.98 17.22 16.59 16.82 16.93 17.66 16.88 16.53 17.57	539 530 573 478 539 453 543 564 476 462 534	79

System of Replication: 4 randomised blocks of 12 plots each. Certain high order interactions are partially confounded with block differences.

AREA OF EACH PLOT (after rejecting edge rows): 1/56 acre. Plots actually 1/40 acre (17.7 lks· x 141.2 lks.).

TREATMENTS: All combinations of:

- (a) No salt (-), agricultural salt at the rate of 4 cwt. NaCl per acre applied before ploughing in winter (Na₁), and agricultural salt applied before sowing (Na₂).
- (b) No dung(-), and dung at the rate of 10 tons per acre applied before winter ploughing (D).
 (c) Ordinary rolling of seed-bed (-), and ordinary rolling + additional heavy rolling (R).
 (d) Normal (-), and normal + intensive inter-row cultivation with motor hoe at 10-daily intervals (C).

Basal Manuring: 0.6 cwt. N per acre as sulphate of ammonia, applied at seeding, 1.0 cwt. K₂O per acre as muriate of potash (high grade), and 0.5 cwt. P₂O₅ per acre as superphosphate applied before ploughing in winter.

CULTIVATIONS, ETC.: Applied dung: Jan. 18 and 22. Applied winter artificials: Jan. 22. Ploughed: Jan. 23-26. Cultivated: April 18. Rolled, harrowed and applied artificials: April 29. Seed sown: April 29. Rolled (heavy roll plots): May 9. Horse hoed: June 14. Singled: June 14-17. Motor hoed "Intensive" plots: June 29, July 10 and 22. Motor cultivated "Intensive" plots: July 30 and Aug. 9. Hand hoed: July 9 and 10. Horse hoed: July 18th. Lifted: Nov. 25-29. Variety: Kleinwanzleben E. Previous crop: Wheat.

STANDARD ERRORS PER PLOT: (Roots washed): 0.692 tons per acre or 5.98%. Tops: 0.936 tons per acre or 9.77%. Sugar percentage: 0.296. Plant number: 1.78 thousands per acre or 6.06%. Mean dirt tare: 0.1048

Responses to Treatments

Mean Yields: Roots (washed): 11.57 tons; Tops: 9.58 tons; Sugar percentage: 17.06; Total sugar: 39.5 cwt.; Plant number: 29.4 thousands.

								and the second		
	1	Mean	C.	alt	D	ing	Po	lling	Culti	vation
	100	response	Absent	Present	Absent	Present		Addi-		Intens-
							ary	tional	ary	ive
- Line Barrie		DO	OTC /	1 . 11			- 77			
0.1			OOTS (w							
Salt		$+0.85^{1}$		-		$+0.49^{2}$	$+1.19^2$	$+0.50^{2}$	$+0.82^{2}$	$+0.90^{2}$
Dung		+1.235	+1.703	+1.004	_	-	+1.256	+1.226	+0.996	+1.486
Rolling		-0.22^{5}	+0.243	-0.454	-0.20^{6}	-0.246			-0.246	-0.206
Intensive		0.00	1 0.22	0.10	0.20	0.22			01	00
cultivation		1 0 0 55	1 0 203	1 0 204	10016	10 206	+0.236	1 0 006	_	
Cuitivation		+0.20	+0.20	+0.20	+0.01	+0.50	+0.25	+0.20		
G:		(4)	22.0 (0)	0.000 #			212 151		(4)	2
St. errors		$(1) \pm 0.2$	$212, (2) \pm$	-0.300, (9)	$^{3})\pm0.346$	$6, (4) \pm 0$.245, (5) :	± 0.199 , ($(6) \pm 0.28$	2.
				-						
			TOPS	: tons	per acre					
Salt		$[-0.41^{1}]$		- 1	-0.51^{2}	-0.31^2	-0.15^2	-0.67^{2}	-0.77^{2}	-0.05^{2}
Dung			+0.263			_				+0.276
Rolling		-0.64^{5}			-0.93^{6}		70.10			-1.05^{6}
	10000	-0.04	-0.29	-0.62	-0.95	-0.55	1		-0.25	-1.03
Intensive										
cultivation		$+0.26^{\circ}$	-0.22°	$+0.50^{4}$	+0.38	+0.14	$+0.67^{6}$	-0.15°	_	
-	-									
St. errors		(1) + 0.2	$287, (2) \pm$	-0.406, ($^{3}) + 0.468$	$8, (4) \pm 0$.331, (5)	$\pm 0.270,$	$(6) \pm 0.38$	2.
		.,-			'-			FIGURE 1	. / —	
SUGAR PERCENTAGE										
Salt		$ +0.19^{1} $		TILL I L			$ +0.25^2 $. 1 0 192	10112	1 1 0 972
				1.0.104	+0.09	+0.50				
Dung			-0.04^{3}					+0.00		$+0.10^{6}$
Rolling		$+0.13^{5}$	$+0.21^{\circ}$	$+0.09^{4}$	+0.196	+0.07	-	_	-0.14	$+0.39^{6}$
Intensive										
cultivation		$+0.07^{5}$	-0.03^{3}	+0.134	+0.086	+0.066	-0.19^{6}	$+0.34^{6}$	_	-
St. errors		(1) + 0.0	0909. (2)	+0.128.	(3) + 0.14	18. (4) +	0.105, (5)	± 0.0857	7. (6) + 0.	121
		(/	, ()		(/	-, (/ _			, ()	
MI KONT PROPERTY		Т	OTAL S	IIGAR .	cwt. pe	er acre				
Salt		+3.3	OTAL S	COMIC.	+4.2	+2.4	1 +4.7	+2.0	+3.0	+3.6
			150	100	+4.2	+2.4				
Dung		+4.4	+5.6	+3.8			+4.6	+4.3	+3.6	+5.2
Rolling		-0.4	+1.3	-1.3	-0.3	-0.6	_	-	-1.1	+0.2
Intensive		1			MIT SHEET			The state of the s		
cultivation		+1.0	+0.6	+1.2	+0.2	+1.8	+0.4	+1.7	_	
toth-It departure		PI	ANT NU	IMBER	thouse	inds per	acre			
Salt		$ +1.3^{1} $	111111	HIDER	$+1.4^{2}$		$ +2.2^2 $	$+0.5^{2}$	$+0.4^{2}$	$+2.2^{2}$
			10.72	10.44	The second second					
Dung		$+3.5^{5}$	$+3.7^{3}$	$+3.4^{4}$		- 40	$+3.4^{6}$	+3.76	$+3.4^{6}$	+3.66
Rolling		-0.5^{5}	$+0.6^{3}$	-1.14	-0.76	-0.4^{6}	-	D	-2.0^{6}	+0.96
Intensive										
cultivation		-0.35	-1.5^{3}	+0.34	-0.4^{6}	-0.26	-1.76	+1.26	_	
	- Anol									
St. errors		(1) +0	546 (2)	0 772 (3) +0 801	(4) +0	.629, (5)	-0.514	(6) +0 79	7
Dt. 011013		()±0.6	, () =	0.1.2, () 土0.001	, ()±0	.020, ()	_ 0.012,	1 0.12	
				-						

Main effects and interactions of salt

Salt	No Dung	Dung	Ordinary rolling	Heavy rolling	Normal cultiva- tion	Intensive cultiva- tion	Mean	Increase
ROOTS (wash	hed): to:	ns per acr	e (+0.245	. Means	· ±0.173	Increase	$s: \pm 0.2$	(45)
None	10.16	11.86	10.89		10.91	11.10	11.01	1
Before ploughing	11.37	12.91	12.49	11.79	12.10		12.14	+1.13
Before sowing	11.34	11.79	11.66	11.47	11.33	11.81	11.57	+0.56
TOPS: tons		$(\pm 0.331.$	Means:	$\pm 0.234.$	Increase	$s: \pm 0.3$	31)	
None		9.99	10.00	9.71	9.97	9.75		
Before ploughing		10.16	9.97	9.27	9.60	9.64	9.62	-0.24
Before sowing	9.35	9.20	9.74	8.81	8.79	9.76	9.28	-0.58
SUGAR PER	CENTAG	E: (±0.	105. Mea	$ns: \pm 0.$	0742. In	creases: -	+0.105)	
None	16.95	16.92	16.83	17.04	16.95	16.92	16.94	
Before ploughing		17.10	17.05	17.17	17.02	17.20	17.11	+0.17
Before sowing	16.96	17.33	17.12	17.18	17.11	17.18	17.15	+0.21
			SUGAR:	cwt. per	acre	0		
None	34.4	40.1	36.6	37.9	37.0	37.6	37.3	
Before ploughing		44.2	42.6	40.5	41.2	41.9	41.6	+4.3
Before sowing	38.5	40.9	39.9	39.4	38.8	40.6	39.7	+2.4
PLANT NUMB	ER: thou	isands per	acre (±0	.629. Med	$ans: \pm 0.$	445. Incr	eases : +	0.629)
None	26.7	30.4	28.2	28.8	29.3	27.8	28.5	1
Before ploughing	27.8	32.3	30.8	29.2	29.9	30.1	30.0	+1.5
Before sowing	28.5	30.9	30.0	29.4	29.4	30.0	29.7	+1.2

Conclusions

Salt produced significant increases in the yield of roots and the sugar percentage, and a small but not significant decrease in the yield of tops. The increase in total sugar was 3.3 cwt. per acre. The increase in roots was significantly greater when the salt was applied before winter ploughing than when it was applied at sowing. This effect, however, appeared only in presence of dung, the interaction between dung and time of application of salt being significant. Otherwise there was little difference in the effects of time of application.

Dung significantly increased the yield of roots, the resultant increase in total sugar being 4.4 cwt. per acre. The increases in tops and sugar percentage were not significant.

Additional heavy rolling gave a significant decrease in tops. There were no significant differences between the effects of ordinary and intensive inter-row cultivation.

Plant number was significantly increased by salt and dung.

SUGAR BEET

Soil fumigation experiment. Effect of chlorpicrin, chlordinitrobenzene, "seekay" and "cymag," as controls of wireworm infestation.

RS—PASTURES, 1935 Plan and yields in lb.

Roots (dirty), tops, sugar percentage and plant number in descending order

103	P	0	N	K	M	107
	217	284	359	148	488	
-	298	330	440	178	532	
	15.72	15.92	15.38	14.83	16.01	
	439	442	474	424	512	
108	M	K	0	N	P	
0	466	146	434	431	450	
	494	152	402	448	439	
	15.49	15.69	16.47	16.27	16.48	
	514	440	520	504	507	
S	0	M	K	P	N	
1	460	522	165	555	516	
1	434	522	202	378	546	
	16.13	16.93	15.26	16.53	15.95	
1	511	515	464	523	495	
	N	P	M	0	K	
	476	464	546	500	179	1
	486	418	542	476	196	
	16.01	16.30	16.39	16.13	15.20	
	500	498	476	464	439	
123	K	N	P	M	0	127
	188	386	384	458	344	
	213	426	375	461	306	
	15.06	15.87	15.78	16.36	16.21	
	426	444	479	486	451	

Note: In the field the plots lay in one line, 108 being next to 107, etc.

System of Replication: 5×5 Latin square.

AREA OF EACH PLOT: 1/60 acre (60.6 lks. × 27.5 lks.).

TREATMENTS: No fumigant (O), chlordinitrobenzene (N) and chlorpicrin (P) at the rate of 2.0 cwt. per acre, "cymag" (M) at the rate of 7.5 cwt. per acre and "seekay" (K) at the rate of 5.0 cwt. per acre.

Basal Manuring: 4 cwt. superphosphate, 2 cwt. muriate of potash and 1 cwt. sulphate of ammonia per acre.

Cultivations, etc.: Ploughed: April 26. Fumigants applied as ploughed. Harrowed: April 30. Rolled: April 30. Seed sown: April 30. Harrowed: May 2. Rolled: May 2. Singled: June 15. Hoed: June 18, 29, July 25 and 26. Lifted: November 5-8. Variety: Kleinwanzleben. Previous crop: Grass.

STANDARD ERRORS PER PLOT: Roots (washed): 0.953 tons per acre or 9.91%. Tops: 1.08 tons per acre or 9.22% Sugar percentage: 0.290. Plant number: 1.18 thousands per acre or 4.11%. The "Seekay" treatment was omitted in the analysis of roots and tops, owing to its low yields. Mean dirt tare: 0.1785.

Summary of Results

	No fumigant	Chlordini- troben- zene	Chlor- picrin	'Cymag'	'Seekay'	Mean	Standard Error
ROOTS (washed), tons							
per acre	8.90	9.54	9.11	10.91	3.64	8.42	+0.426*
TOPS, tons per acre SUGAR	10.44	12.57	10.22	13.67	5.04	10.39	±0.519*
PERCENTAGE TOTAL SUGAR, cwt.	16.16	15.92	16.16	16.24	15.22	15.94	±0.130
per acre	28.8	30.4	29.4	35.4	11.1	27.0	_
thousands per acre	28.6	29.0	29.4	30.0	26.3	28.7	+0.528

^{*} These standard errors are not applicable to the "Seekay" treatment.

Conclusions: Yields

The yield of roots with "cymag" was significantly higher than that with chlorpicrin or chlordinitrobenzene, the latter yields not being significantly different from the yield with no fumigant. The response to "cymag" may be an effect of nitrogen, the dressing being equivalent to 87 lb. nitrogen per acre.

- "Cymag" and chlordinitrobenzene significantly increased the yields of tops, the increases not being significantly different. There were no significant effects on sugar percentage, apart from the reduction due to "seekay."
- "Seekay" gave low yields and a low sugar percentage. This was possibly because it was applied too near sowing date.

No relation was found between the yields of roots and the numbers of wireworms at the second count, after eliminating treatment effects.

Wireworm Counts:

Plan and number of wireworms per plot (total of six samples) 1st count above, 2nd count below

107	M	K	N	0	P	103
	19	34	20	6 3	6	
1	17	8	29	3	6	
	P	N	0	K	M	
	26	25	34	20	15	
	16	12	18	13	8	
	N	P	K	M	0	S
	22	33	24	17	20	1
1	28	10	7	12	16	1
	K	0	M	P	N	
	32	24	36	24	39	
4582	7	22	13	11	14	
127	0	M	P	N	K	123
	19	29	35	22	26	
	20	14	24	26	7	

Note: At the first count three random samples per half plot were taken; at the second count two per third of a plot. Each sample consisted of 9 ins. × 9 ins. × 4 ins. (deep) of soil.

STANDARD ERRORS PER PLOT: First count: sampling error: 6.06 or 25%; experimental error: 6.99 or 29%. Second count: sampling error: 4.87 or 34%; experimental error: 7.18 or 50%.

Summary of Results: Second Count

No. of wireworms per square yard, 4 inches deep

No fumigant	Chlordini- trobenzene	Chlor- picrin	"Cymag"	"Seekay"	Mean	Standard error.
42	58	36	34	22	38	±8.59

Conclusions: Wireworm Counts

The effects of the treatments on the numbers of wireworms were not significant. No relation was found between the numbers of wireworms per plot at the first and second counts, after allowing for possible treatment effects.

BRUSSELS SPROUTS

Effect of sulphate of ammonia, poultry manure, soot and rape dust

FOSTER'S—RD, 1935 Plan and yields in lb. saleable sprouts Total of both Pickings

	R ₁	N ₂	M ₂	M ₁	M ₀	R ₁	R ₀	N ₁
	37.0	22.5	13.5	26.5	34.5	29.0	37.5	32.5
	S ₂ 41.0	S ₁ 25.0	N ₁ 12.0	M ₀ 17.5	S ₀ 21.5	M ₁ 34.0	M ₂ 41.0	N ₂ 35.0
	R ₀ 27.5	S ₀ 15.5	R ₂ 25.0	N ₀ 17.0	R ₂ 41.0	S ₂ 36.5	N ₀ 44.5	S ₁ 26.0
	R ₀	N ₂	M ₁	S ₁	R ₀	R ₂	R ₁	M ₁
	26.0	15.5	17.0	30.0	21.5	27.0	25.5	30.0
	N ₀	M ₂	M ₀	S ₀	M ₀	N ₂	N ₁	S ₂
	17.0	20.0	23.5	19.5	23.5	28.0	30.0	30.5
1	R ₁	S ₂	R ₂	N ₁	S ₀	N ₀	S ₁	M ₂
	19.5	25.5	20.0	29.5	28.0	20.5	24.5	24.4*

* Estimated.

System of Replication: 4 randomised blocks of 12 plots each.

AREA OF EACH PLOT (after rejecting edge rows): 0.024174 acre. Plots actually 10 yds. x 14 yds

TREATMENTS: 1935. No nitrogen (O), sulphate of ammonia (N) half applied in seed bed and remainder as a top dressing, poultry manure (M), soot (S) and rape dust (R), applied at the rate of 0.4 cwt. N per acre (1) or 0.8 cwt. N per acre (2).

Plots receiving treatment O in 1935 had treatment 2 in 1934 and vice versa. Plots receiving treatment 1 had this in both years. For N_0 , S_0 , M_0 and R_0 (see plan), the treatment symbols refer to the 1934 treatment.

Basal Manuring: All plots were made up to 1.0 cwt. P₂O₅ per acre. and 1.0 cwt. K₂O per acre, using superphosphate and muriate of potash (an allowance being made for the P₂O₅ and K₂O contained in the organic manures).

Cultivations, etc.: Ploughed: Mar. 5 and 6. Harrowed: Mar. 16. Ploughed: Mar. 18-20. Harrowed: May 3. Rolled: May 3. Manures applied: May 22-29. Second half of sulphate of ammonia applied: July 27. Harrowed: May 28-29. Rolled: May 30. Brussels planted: June 5-6. Hoed: July 24, 30, 31 and Sept. 16. Harvested: First picking: Nov. 19-20. Second picking: Mar. 5. Previous crop: Brussels.

STANDARD ERROR PER PLOT (total of both pickings, saleable sprouts): 2.42 cwt. per acre or 24.8%.

Special Note: Owing to damage by pigeons the weights at the second picking were very small.

Saleable Sprouts—total of both pickings: cwt. per acre (± 1.21)

Nitrogen, 1934	cwt. p.a. 1935	Sulph. amm.	Poultry manure.	Scot.	Rape dust.	Mean. (±0.605)
0.8	0.0	9.1	9.1	7.8	10.4	9.1
0.4	0.4	9.6	9.9	9.7	10.2	9.8
0.0	0.8	9.3	9.1	12.3	10.4	10.3
Mean (±0	0.699)	9.3	9.4	9.9	10.3	9.7

Conclusions

The experiment is designed to measure the difference in the immediate and cumulative effects of certain organic fertilisers and sulphate of ammonia. The yield was a very poor one, owing to adverse weather conditions and damage by birds. There were no significant effects.

BEANS

Effect of dung, nitrochalk, superphosphate and muriate of potash, and of spacing of the rows.

RE-Little Hoos, 1935.

Plan and yields in lb., grain above, straw below.

S ₁ NK	Sı	S ₁ P	S ₁ NPK
71.2	66.5	56.7	48.0
86.8	82.5	68.3	52.0
S ₂ NP	S ₂ DN	S2DNP	S ₂ N
45.7	70.5	64.6	23.3
57.3	93.0	82.4	25.7
S ₁ DP	S ₂ PK	S_1D	S ₂ K
76.7	74.3	74.8	39.3
95.3	84.7	97.2	41.2
S ₂ DK	S ₁ DNPK	SIDNK	S ₂ DPK
73.3	77.0	73.7	56.3
86.7	112.5	104.3	71.7
S ₂	S ₂ DP	S ₁ N	S ₁ K
36.2	49.8	68.0	63.6
40.3	65.2	81.5	68.9
S ₂ NK	S ₁ DK	S ₂ DNK	SIDPK
60.5	51.3	92.5	63.6
62.5	73.2	114.5	82.9
S ₁ NP	S ₂ DNPK	S ₂ P	S ₁ DNP
36.3	61.3	29.9	60.8
48.7	82.2	39.1	80.7
S ₁ DN	S ₁ PK	S ₂ D	S ₂ NPK
67.3	49.6	54.7	47.9
	The same of the sa		21.0

System of Replication: 4 randomised blocks of 8 plots each. Certain interactions confounded with block differences. Error estimated from high order interactions.

Area of Each Plot: 1/40 acre (68.7 lks. × 36. 4 lks.)

Treatments: All combinations of:

Cultivations: Dung applied: Oct. 10. Ploughed: Oct. 10-17. Artificials applied: Oct. 20. Harrowed: Oct. 22. Drilled: Oct. 22. Harrowed: Oct. 24 and Mar. 20. Nitro-chalk applied: Mar. 28. Hand hoed: May 1-7. Harvested: Aug. 6. Previous crop: Wheat.

STANDARD Errors PER PLOT: Grain: 3.38 cwt. per acre or 16.1%. Straw: 3.57 cwt. per acre or 13.6%.

Responses to fertilisers: cwt. per acre. Mean yields: Grain: 21.0 cwt.; Straw: 26.3 cwt.

Treatment	Mean				Diffe	rential	respons	ses			
	res-	Spa	cing	Di	ing	Nitro	-chalk	Sur	per-	Muria	te of
	ponse	18 ins.	24 ins.	Abs.	Pres.	Abs.	Pres.	phos	phate Pres.	Pot	
		GR	AIN:	(±1.69	. Mean	n respon	nse : ±	1.20)			
Nitro-chalk Super- phosphate Muriate of	$ \begin{vmatrix} +2.8 \\ +5.6 \\ +1.2 \\ -2.0 \\ +2.7 \end{vmatrix} $	+3.8 0.0 -3.0 -0.4	$ \begin{array}{r} - \\ +7.4 \\ +2.4 \\ -0.9 \\ +5.8 \end{array} $	$\begin{vmatrix} +4.6 \\ -0.7 \\ -1.8 \\ +4.1 \end{vmatrix}$	$\begin{vmatrix} +1.0 \\ -3.0 \\ -2.1 \\ +1.3 \end{vmatrix}$	+4.0 +3.8 - -0.1 +1.2	$\begin{vmatrix} +1.6 \\ +7.4 \\ -3.8 \\ +4.2 \end{vmatrix}$	+3.8 +5.8 +3.0 - +2.8	+1.7 +5.4 -0.7 - +2.6	+5.9 +7.0 -0.4 -1.8	$ \begin{vmatrix} -0.3 \\ +4.2 \\ +2.7 \\ -2.1 \end{vmatrix} $
		STR	AW: ($\pm 1.78.$	Mean	respon	ise: ±	1.26)		1	
Nitro-chalk Super- phosphate Muriate of	+4.6 +9.8 +2.4 -1.7 +2.8	$ \begin{array}{r} - \\ +8.4 \\ +1.3 \\ -3.8 \\ -0.2 \end{array} $	$+11.3 \\ +3.5 \\ +0.4$	+6.1 -0.4 -0.9 $+3.1$	+3.1 $+5.2$ -2.4 $+2.5$	+5.7 +7.1 -0 +0.2 +0.4	$\begin{vmatrix} +3.4 \\ +12.6 \\ -3.6 \\ +5.2 \end{vmatrix}$	$\begin{vmatrix} +6.6 \\ +10.6 \\ +4.3 \end{vmatrix}$ $ +2.7$	+2.5 +9.1 +0.5 - +3.0	+7.6 +10.2 0.0 -1.8	$ \begin{array}{r} +1.6 \\ +9.5 \\ +4.8 \\ -1.5 \end{array} $

Interaction of spacing and muriate of potash.

Spacing	Muriate	of potash	STRAW: cwt. per acre Muriate of potash		
	None	1.0 CWt. K ₂ O	None	1.0 cwt. K ₂ O	
18 inches	22.6	22.2	28.7	28.5	
24 inches	16.7	22.6	21.1	26.9	

STANDARD Errors: Grain: ± 1.20 . Straw: ± 1.26 .

Conclusions

The 18-inch spacing gave significantly higher yields of both grain and straw than the 24-inch spacing. The responses to dung were both significant, that for grain being 5.6 cwt. per acre or 26.7 per cent. of the mean yield. The increases due to nitro-chalk were not significant. Superphosphate produced slight, though not significant, decreases in yield. The response to muriate of potash was significant in the case of grain and almost significant in the case of straw. This effect, however, appeared only with the 24-inch spacing, the interaction between muriate of potash and spacing being significant for both grain and straw.

N