Thank you for using eradoc, a platform to publish electronic copies of the Rothamsted Documents. Your requested document has been scanned from original documents. If you find this document is not readible, or you suspect there are some problems, please let us know and we will correct that.

A Celebration of 150 Years of the Park Grass Experiment

Full Table of Content

Species Composition Table

Rothamsted Research

Rothamsted Research (2006) *Species Composition Table*; A Celebration Of 150 Years Of The Park Grass Experiment, pp 3 - 3 - **DOI:** https://doi.org/10.23637/ERADOC-1-253

Species comprising at least 10% of herbage, and total number of species; mean 1991-	-2000.
---	--------

	R. As	Soil all		P	erce	ntag	e of	dry i	matte	er (S	pecie	es na	mes	s are	in B	old	in lis	t op	posit	e).	di.	Total
Treatment	Plot	Soil pH 1995-02	AC	AP	AO	AE	DG	FR	HP	HL	LoP	LaP	TP	AS	CN	нѕ	LH	PL	RaA	RuA	SM	specie
Nil	3a b	7.2 6.4	10 10	++	+	+	+	20 20	+	++	+	++	++	-	10 10	+	15 15	+ 10	+	+	10 +	39 36
	c d	5.3 5.2	30 45	-+	++	-+	+	30 30	++	++	-	+	++	-	10	+	15	+	++	+	+	37 36
Nil	12a	7.0	15	+	+	+	+	10	+	+	+	+	10		+	+	20	+	+	+	+	44
. M.	b c	6.3 5.2	20 25	++	++	+	+	20 40	++	+	+	++	+	-	+	-+	15 10	++	++	+	++	42 37
	d	5.1	30	-	+	+	+	30	+	+	+	+	+	-	+	-	15	+	+	+	+	42
Nil	2/2a b	7.1 6.0	15 10	+	+	+	+	15 15	+	+	+	+	+	-	10 10	+	20 15	+ 10	+	+	+	42 37
	c d	5.2 5.1	30 35	+	+	+	+	35 30	+	+		+	+		10 20	- 1	+	+	+	+	+	33 33
P	4/1a	6.9	+	+	+	+	+	20	+	+	+	+	10	-	+	+	15	10	+	+	+	34
	b	6.1 5.2	30	+	+	+	+	20 25	+	+	+	+	+	-	+	-	10 10	15 +	10	+	+	34 29
	d	5.3	25	+	+	+	+	25	+	+	+	+	+	-	+	-	15	+	+	+	+	32
PNaMg	8a b	7.0 6.1	10	+	+	+	+	20 20	+	+	+	+	10	-	10	+	15	+	10	+	+	36 37
	d d	5.3 5.2	30 30	+	+	+	+	20 20	+	+	+	+	+	-	+	+	15 10	+	+	+	+	32 29
PKNaMg	7a	6.9	+	+	+	15	+	+	+	+	+	15	15	+	+	+	-	10	+	+	-	27
	b c	5.9 5.0	25	15	+	20	+	+	+	+	-	15	10	-	15	+	+	10	+	+	-	29 28
PKNaMg	d 15a	4.9 6.7	40	+	+	10	+	10	+	+	+	20	15	+	10	-	+	+	+	+	•	28
FRIVAINIS	b	5.9 5.0	+	+	+	15	+	10 10	+	+	+	+ +	20	+	15	+	+	10	+	+	-	27 26
	d	4.9	40	+	+	+	+	10	+	+	+	+	10	-	+	+	+	+	+	+	-	27
N*1	17a	7.1 6.4	10 15	+	+	+	+	15 +	++	++	++	-+	+	:	+	+	25 30	10 15	+	+	+	32 34
	c d	5.8 5.8	25 25	+	+	+	+	10 10	+	+	+		-	-	10	+	25 10	10	+	+	+	34 34
N*1PKNaMg	16a	6.7	+	10	+	25	+	15	+	+	+	10	10	+	-	+	-	+	+	+		25
	b	6.2 5.5	+ 25	10 10	+	25 15	+	15 10	++	+	+	+	+	+	:	+	-	10	+	+	-	25
	d	5.4	35	+	+	15	+	+	+	+	+	+	+	-	+	+	-	+	+	+	-	27
N*2PKNaMg	14/2a b	6.9 6.4	++	20 20	-+	50 40	++	++	+	-+	++	+	-+	10 10	1	+	1	+	++	++	:	24 24
	c d	6.1 5.9	++	20 25	+	40 30	+ 10	++	-+	++	++	+	-	+	:	+ 10	:	++	++	+	-	21 22
N1	1a	7.1	+	+	+	+	10	25	10	+		+	+		+		10	+	+	+	+	33
	b	6.2 5.3	20 35	+	+	+	10	25 45	+	+	+	++	+	-	10	-	+	+	+	+	+	31
	d	4.1	65	-	30	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	10
N2KNaMg	18a b	7.1 6.3	15 30	+	+	+	10	15 15	+	+	+	-	+	-	10 25	+	10	+	-	+	-	30 29
	c d	5.4 3.8	35 80	+	20	+	15 -	20	+	+	10	:	-	:	+	+	-			+		21 6
N2P	4/2a	6.9	10	+	+	+	+	55	+	10	+				+			+	+	+		22
	b c	6.2 5.2	15 30	10	+	+	+	55 55	+	10	+	-	-	-	-	-	-	+	-	10	-	14 18
10	d	3.7	30	-	70	+	-	+	-	+	-	-	-	-	-	-	-	-	-	+	-	10
N2PNaMg	10a b	6.9 5.9	10 20	15	10	+	+	45 40	-	+	-	-		-	- 3	-	-	10 +	+	10	-	23 15
	c d	4.9 3.7	25 +	-	10 85	-	-	50 -	-	10	- 1	-	-	- 1	-	-	-	-	-	10	-	16 4
N2PKNaMg	9/2a b	6.9 6.3	+	15 25	+	25 35	10	+	-+	15 15	+	+	+	+	-	10	:	+	+	+	:	22 17
	c d	5.0	30 15	10	10 65	+	+	15	-	+ 20		+	+	+		+		-		+		18
N3PKNaMg	11/1a	6.5	+	20	-	40	10	+	+	10	+			+	_	+		_	+	+	_	14
	b	6.2 4.9	+	20 30	++	35 20	20	+	+	10	+	:	-	++	1	+	1	:		++	:	15 13
	d	3.6	-		+	-	-	-	-	100	-	-	-	-	-	-	-	-	-	-	-	3
N3PKNaMgSi	11/2a b	6.7 5.9	+	25 35	+	45 40	10 10	+	-	+ 10	+	+	-	+	-	10	1	+	:	+	:	14 10
	c d	5.0	10	40	+	35	+	+	+	10 95	:	1	:	+	1	+	-	-	:	+	-	13
FYM/PM	13/2a	6.8	30	+	+	+	10	15	+	+	10			-	+	+	-			+	-	28
	b	6.1 5.3	+ 20	15 +	++	20 +	10	+	-+	10	+	++	-+	++	++	10 +	+	+ 10	++	++	-	30
	d	5.1	35	10	+	+	+	10	+	10	+	+	+	-	+	+	+	+	+	+	-	34
FYM	19/2 19/3	6.1 5.7	+ 25	10 +	++	20 15	++	++	++	++	++	++	+	+	++	++	-	15 10	+ 10	+	-	30 27
THE STATE	19/1	5.4	45	+	+	10	+	+	+	+	+	+	+	-	+	+	+	+	+	+	-	31
FYM/N*PK	20/2 20/3	6.1 5.9	+ 15	15 10	++	25 15	10	++	++	10 10	+	+	+	+	+	+	-	++	++	+	-	29 26
	20/3	5.7	35	10	+	15	+	+	+	+	+	+	+	+	+	+		+	+	+	-	27

Data are from surveys immediately before hay harvest; rounded to the nearest 5% of dry matter, mean 1991-2000.

+, species present at less than 10%; -, species not identified on that plot.