Thank you for using eradoc, a platform to publish electronic copies of the Rothamsted Documents. Your requested document has been scanned from original documents. If you find this document is not readible, or you suspect there are some problems, please let us know and we will correct that.

The Park Grass Plots at Rothamsted 1856-1949

Chapter V. Effect of Manures and Lime on Individual Species

Rothamsted Research

Rothamsted Research (1958) Chapter V. Effect of Manures and Lime on Individual Species ; The Park Grass Plots At Rothamsted 1856-1949, pp 82-136-DOI:
https://doi.org/10.23637/ERADOC-1-154
(f) All three groups of plants are well represented, the LEGMINOSAE showing the greatest variation with season ($1.8-20.0$ per cent).

Main Constituents of the Herbage on Plot 19

GRAMINEAE

Agrostis vulgaris	Chief species
Alopecurus pratensis	
Anthoxanthum odoratum	
Festuca rubra	
Arrhenatherum avenaceum	Usually fairly well represented,
Avena flavescens	
Avena pubescens	but relative abundance varies
Dactylis glomerata	with season
Holcus lanatus	
Poa trivialis	Quantity small

IEGUMINOSAE

Lathyrus pratensis
Chief species

MISCELLANEOUS

OTHER SPECIES:- Briza, Lolium, Poa pratensis; Lotus. Trifolium pratense, T.repens; Agrimonia, Ajuga, Anthriscus, Centaurea, Cerastium, Heracleum, Hypochaeris, Leontodon, Imzula, Plantago, Prunella, Stellaria, Taraxacum, Tragopogon, Veronica (See Tableb).

Outline of Principal Changes during the period 1877-1948

Yield. Constant, with seasonal fluctuations, until manuring changed in 1905 When it fell and has since remained at much the same level.

Number of Species. Reduced since the change in manuring.

-83-

Number of Species

	$\underline{1862}$	1877	1908	1914	1919	1930	1240	1948
G	16	16	$?$	13	13	10	12	12
L	4	5	8	4	2	4	2	4
M	21	18	$?$	14	15	12	13	13
Total	41	39	39	31	30	26	27	29

Composition of the Herbage.

Percentage of Gramineae, Leguminosae and Miscellaneous Species

	$\underline{1872}$	1877	$\underline{1905}$	1914	1917	1919	1936	1948
G	89.4	81.0	64.0	78.8	68.7	75.2	84.1	50.3
L	2.5	8.7	17.8	10.0	21.4	6.1	5.2	17.4
M	8.1	10.3	18.2	11.2	9.9	18.6	10.7	32.3

GRAMINEAE Proportion little changed or slightly reduced till 1944 when reduction marked
Alopecurus pratensis Increased till 1919, later reduced to former level

Arrhenatherum avenaceum Increased
Holcus lanatus Decreased by 1914

Daotylis glomerata Decreased since 1919
$\left.\begin{array}{l}\text { Dolium perenne } \\ \text { Bromus mollis }\end{array}\right\} \quad$ Disappeared
Cynosurus cristatus

LFGUMINOSAE Variable, increased in many seasons
Lathyrus pratensis \quad Chiefly responsible for increase

MISCRLLANEOUS Little change till 1944 when considerably increased
$\left.\begin{array}{l}\text { Achillea millefolium } \\ \text { Plantago lanceolata }\end{array}\right\} \quad$ Responsible for most of increase since 1944

Ranunculus spp. Much increased
Parnex acetosa Variable
-84-

Changes in the Percentage of Certain Species

	1872	1877	1914	1919	1946	1948
Alopecurus pratenais	0.2	5.4	13.4	22.3	13.1	6.2
Arrhenatherum avenac aum	$<$	-	3.7	7.9	9.8	5.7
Cynosurus oristatus	1.2	2.5	-	-	-	-
Dactylis glomerata	0.7	2.4	12.0	15.8	3.6	3.3
Holcus lanatus	14.0	21.2	3.5	2.1	2.7	1.3
Achillea millefolium	0.7	0.7	1.7	1.4	5.3	10.2
Plantago lanoeolata	0.2	0.3	0.2	0.2	15.8	11.8
Ranunoulus spp.	2.0	0.2	1.0	4.8	5.9	5.7
Rumex acetoba	0.7	2.7	2.1	8.4	1.8	1.3

Effect of Lime

The quantities of lime applied on this plot to satisfy the lime requirement as determined by the two methods were:- light dressing (LL) 571 Lb. . and heavy dressing (HL) 3,151 lb. per acre.
pH. Not determined in $1945 \quad(L=6.5 ; \quad \mathrm{HL}=7.6$ in 1957).
Yield. Usually decreased, especially with the heavy dressing.
Number of Species. Fractically no effeot.

Composition of the Herbage.
GRAMINEAE Usually increased, especially by the heavy dressing. Some species reduced.

LEGUMINOSAE Variable; no constant difference between the unlimed and either level of lime.

MISCELLANEOUS
Generally decreased, especially by the heavy dressing.

Agrostis vulgaris
Alopecurus pratensis
Anthoxanthum odoratum
Arrhenatherum avenaceum
Avena flavescens
Avena pubescens
Festuca rubra

Lathyrus pratensis

Ranunculus spp.
Plantago lanceolata
Achillea milleiolium

$\begin{array}{llllllllll}21.8 & 17.8 & 13.9 & 5.8 & 5.1 & 2.4 & 8.0 & 2.8 & 0.1 & 11.8 \\ 4.3 & 0.5\end{array}$

$\begin{array}{llllllllllll}10.3 & 8.3 & 2.9 & 11.6 & 7.9 & 0.7 & 9.1 & 2.7 & 0.1 & 7.3 & 1.5 & -\end{array}$
$\begin{array}{lllllllllll}8.2 & 0.3 & 13.8 & 7.9 & 3.5 & 15.9 & 9.8 & 6.4 & 13.9 & 5.7 & 5.5\end{array} 14.3$
$\begin{array}{llllllllllll}5.0 & 7.7 & 10.5 & 3.5 & 3.2 & 6.1 & 1.4 & 0.5 & 2.4 & 1.7 & 3.0 & 3.1\end{array}$
$\begin{array}{llllllllllll}4.0 & 1.9 & 4.6 & 3.0 & 2.8 & 11.9 & 0.5 & 1.7 & 2.7 & 0.9 & 1.9 & 5.4\end{array}$
$\begin{array}{llllllllllll}12.5 & 9.8 & 15.5 & 8.1 & 3.7 & 13.9 & 4.6 & 2.5 & 3.3 & 9.8 & 5.0 & 4.5\end{array}$
$\begin{array}{llllllllllll}4.8 & 2.1 & 3.4 & 1.6 & 1.5 & 1.0 & 9.5 & 10.5 & 13.2 & 13.5 & 7.4 & 7.5\end{array}$
$\begin{array}{llllllllllll}0.4 & 1.3 & 0.7 & 1.8 & 2.5 & 1.4 & 5.9 & 10.4 & 2.3 & 5.7 & 7.9 & 4.0\end{array}$

$\begin{array}{llllllllllll}0.1 & 0.2 & 0.2 & 0.2 & 0.1 & 0.4 & 6.3 & 5.4 & 1.9 & 10.2 & 5.2 & 2.3\end{array}$
$\mathrm{LL}=$ Light lime $\quad \mathrm{HL}=$ Heavy lime
farminad lianure gvery fourth year with nt trate of soda and mindrals in intrrvening yrars, after ntrate of POTASH AND SUPRRPHOSPHATE 1872-1904 (Plot 20)

```
Condition of Plot in 1949 (Unlimed)
```

(a) pII not determined in 1945. (5.7 in 1957).
(b) Herbage mixed and well grown, but rather irregular.
(c) Growth starta early, especially in the years that farmard mamure is applied.
(d) Yíeld fairly heavy, higher than on Plots 18 and 19.
(e) Fourteen to twenty-nine species, with occasional traces oi several others.
(f) All three groups well represented. The rance as shown by the partial separations from 1910-1948 was:-

	Per cent
G	$63.5-93.2$
L	$1.0-25.0$
M	$4.2-29.8$

Main Constituents of the Herbage on Plot 20

GRAMINEAE

Alopeourus pratensis	Chief species
Arrhenatherum avenaceum	Well represented, but relative abundance varies with season
Dactylis glomerata	
Agrostis vulgaris	
Anthoxanthum odoratum	
Avena pubescens	Usually well represented
Avena flavescens	
Festuca rubra	
Holcus lanatus	
Bromus mollis	Very variable in
Poa trivialis	Very varlable in quantity

LEGUMINOSAE

Lathymis pratensis
Chief species

MISCELLAHEOUS
$\left.\begin{array}{l}\left.\begin{array}{l}\text { Achillea millefolium } \\ \begin{array}{l}\text { Rumex acetosa } \\ \text { Ranunculus spp. } \\ \text { Plantago lanceolata } \\ \text { Tragopogon pratensis } \\ \text { Taraxacum vulgare } \\ \text { Veronica chameodrys }\end{array}\end{array}\right\} \quad \text { One or other usually dominant } \\ \hline\end{array}\right\} \quad$ Small quantity, variable

OTHER SPECIES:- Festuca pratensis, Lolium, Poa pratensis; Lotus, Trifolium pratense, T.repens; Ajuga, Cerastium, Centaurea, Conopodium, Heracleum, Luzula (See Tables).

Yield. Constant except for seasonal fluctuations till the manuring changed in
1905. Reduced for same years after, but has tend to improve since 1930.

Number of species. Reduced.

Number of Species

	1872	1877	1908	1914	1919	1928	1932	1946	1948
G	15	16	$?$	14	14	14	12	13	12
L	5	4	$?$	3	1	2	2	2	3
M	22	18	$?$	11	14	11	10	10	9
Total	42	38	39	29	29	27	24	25	24

Composition of the Herbage.

Peroentage of Gramineae, Leguminocae and Miscellancous Species

	1872	1877	1905	1914	1917	1212	1928	1939	1946	1948
G	87.1	86.1	62.8	84.2	66.1	81.8	93.0	84.3	72.1	86.3
L	2.0	3.7	23.4	6.5	25.0	4.7	2.8	9.0	5.7	5.0
M	10.9	10.2	13.8	9.3	8.9	13.5	4.2	6.7	22.2	8.7

GRAMINEAE Proportion relatively constant; exceptionally low (65 per cent) in 1945.

Alopecurus pratensis Arrhenatherum avenaceum	
Ductylls glomerata	Much increased Avena pubescens
Increased since 1904	
Holcus lanatus	Increased from 1904-1919 but now reduced to former level

LEGMINOSAE Very variable: exceptionally high in 1945 (18 per cent).

MISCELLANEOUS Very variable: exceptionally high (over 20 per cent) in 1942 . 1946 and 1947.

Anthriscus gylvestris

Variable

Introduced since 1877 and of some importance till 1919, now almost disappeared

Changes in the Percentage of Cortain Species

	1872	1877	1914	1919	1928	1946	1948
Agrostis vulgaris	31.4	10.4	4.5	6.5	4.1	3.0	4.1
Alopeourus pratensis	1.2	6.8	11.2	30.3	46.2	33.9	39.2
Anthoxanthum odoratum	7.2	3.5	0.6	1.2	1.9	1.3	1.1
Arrhenatherum avenaceum	$<$	$<$	4.2	4.6	11.3	9.9	15.1
Avena pubesoens	1.0	2.4	6.3	10.2	6.6	2.6	0.7
Dactylis glomerata	0.3	1.2	10.0	12.5	7.0	10.3	14.7
Holcus lanatus	12.4	29.5	10.4	6.8	4.1	3.0	1.0
Lolium perenne	2.0	3.6	0.3	0.3	0.4	0.1	-
Lathyrus pratensis	0.1	2.7	6.4	4.7	2.6	$5 \cdot 5$	4.3
Ranunculus spp.	3.9	4.0	0.5	2.1	0.8	5.0	1.2
Anthriscus sylvestris	-	-	2.8	2.5	0.4	0.7	0.6
Rumex acotosa	1.3	1.5	0.3	3.3	1.4	5.1	1.5

Effect of Lime

The quantities of lime applied are:- light dressing (LL) 571 lb . and heavy dressing (HL) 2,775 lb. per acre,
pH. Not determined in 1945. $\quad(L L=6.5 ; \quad H L=7.6$ in, 1957).

Yield. No consistent effect.

Number of Species. Little changed, excent for occasional increase with heavy lime.

Composition of the Herbage.
GRAMINEAE Proportion unaffected by the light but reduced by the heavy dressing

Anthoxanthum odoratum	Usually increased by light lime
Arrhenatherum avenaoeum	Response varies with season

LEGUMINOSAE Variable, but usually inoreased by heavy lime

MISCELLANEOUS Increased, especially by the heavy dressing

| Plantago lanceolata |
| :--- | :--- |
| $\left.\begin{array}{ll}\text { Ranunculus spp. } \\ \text { Rumex goetosa }\end{array}\right\} \quad$ Increased |\quad Response varies with season

-89-
Effect of Lime on the Percentage of Certain Species

$\begin{array}{llllllllllllllll}\text { Agrostis vulgaris } & 13.3 & 10.5 & 5.0 & 4.1 & 4.2 & 1.2 & 3.0 & 1.5 & 0.1 & 4.1 & 2.5 & 0.1\end{array}$
Anthoxanthum odoratum $\begin{array}{llllllllllll}1.1 & 6.4 & 1.8 & 1.9 & 6.4 & 0.7 & 1.3 & 3.2 & 0.7 & 1.1 & 1.9 & 0.2\end{array}$ Arrhenatherum avenacoum
Avena pubesoens $\begin{array}{llllllllllllllllllllll}10.0 & 9.5 & 4.1 & 11.3 & 8.7 & 3.8 & 9.9 & 26.9 & 15.5 & 15.1 & 21.7 & 17.4\end{array}$
$\begin{array}{lllllllllll}12.3 & 8.0 & 19.2 & 6.6 & 9.3 & 28.9 & 2.6 & 4.0 & 9.1 & 0.7 & 3.0\end{array} \quad 6.8$
$\begin{array}{lllllllllll}10.0 & 10.3 & 8.0 & 4.1 & 7.9 & 5.0 & 3.0 & 2.9 & 1.4 & 1.0 & 5.7 \\ 1.6\end{array}$
$\begin{array}{llllllllllll}1.2 & 1.8 & 1.0 & 1.2 & 3.5 & 3.0 & 0.9 & 4.0 & 3.6 & 1.3 & 3.9 & 4.3\end{array}$

Plantago lanceolata
$\begin{array}{llllllllllll}0.5 & 0.4 & - & 0.4 & 0.4 & 3.2 & 6.7 & 6.3 & 0.9 & 6.2 & 4.1\end{array}$
Ranunculus spp.
Rumex aoetosa

0.9	0.8	1.2	0.8	1.3	1.2	5.0	1.2	1.9	1.2	1.9	1.3

$\begin{array}{llllllllllll}1.5 & 1.3 & 1.1 & 1.4 & 1.6 & 0.3 & 5.1 & 1.6 & 1.7 & 1.5 & 1.4 & 0.5\end{array}$
$U=$ Unlimed LL - Light Lime HL $=$ Heavy Lime
indicates below 0.05
-90-

CHAPTER V.

EFFEGT OF MANURES AND LINE ON INDIVIDUAL SPECIES

Every speoies of importance is considered individually in this chapter. Some indication is given of the extent to which it has ooourred on the various plots, both unlimed and limed, and the mamurial treatments which favour or discourage it are briefly sumarised. Where applioable, a list follows of the Chief plant associations of whioh it is a member. Changes in nomenciature (1952) are given in brackets. Details of the manurial treatments on the different plots will be found in Table 1 .

A. GRAMINEAE

AGROSIIS VULGARIS (A. temuis) Fig. 12.

Ocours in samples from every plot, limed and unlimed. It is usually present in fair quantity, except on the plots receiving super only or nitrate of soda and minerals. It is very muoh disoouraged by lime.

UNLTMED

QUANTITY

Very large (usually over 40 peroent)
Plots 1 Ammonium salts
$4^{2} \quad$ Super and ammonium salts
10 Minerals without potash and amonium salts (under 10 peroent till 1939)
11^{2} Minerals with silicate and heavy ammonium salts (under 1 percent till 1915)
18 Minerals without super and ammoniun ealts

```
Large (9-20 percent)
```

plots 3.5^{1} Unmanured
5^{2} Minerals after amonium salts till 1897
15 Minerals

-91-

Medium (1-9 percent)

Very variable (0-12 percent)
Plot 9 Minerals and ammonium salts

Usually very low

Plote	4^{l}	Super
	14,16	Minerals and nitrate of soda

Agrostis vulgaris enoouraged by:-
(a) Starved soils
(b) Minerals and sulphate of ammonia, alone or in combination
(o) Organic manures

Agrostis vulgaris not encouraged by:-
(a) Superphosphate
(b) Nitrate of soda with minerals

LIMED **

QUANTITY

Considerably decreased

Plots $1,4^{2,10} \quad$| | Ammonium salts with inoomplete minerals |
| :--- | :--- |
| 3 | Unmanured |
| 7,15 | Minerals |
| 11^{2} | Minerals with silicate and heavy ammonium salts |
| 13 | F.Y.M. and fish guano alternately |
| 17 | Nitrate of soda |

* P.Y.M. = Farmyard manure.
** For Plots 18, 19 and 20 throughout, both levels of lime are ibcluded unless otherwise stated vis. LL = light lime; HL = heavy lime.
-92-

Slightly deoreased

Plots	8	Minerals without potash
11^{1}	Minerals and heavy ammonium salts	
19. 20	F.Y.M., with and without minerals	
		and nitrate of soda

Plots with Agrostis vulgaris among the three chiel grasses.

Agrostis vulgaris in Plant Commities

UNLIMED

A marked feature of all associations except the specialized ones occuring with heavy nitrogenous manuring or super alone. The absence of Agrostis from the Dactylis-Holous-Festuca-Avens pubesoens community in the latter case (Plot \hat{i}^{1}) , is noteworthy, as the herbage is not of the coarse rank nature which would kill out Agrostis simply by competition.

LIMED

Agrostis vulgaris is a less conspicuous element of the various associations on the limed areas.

AIRA CAESPITOSA (Deschampsia caespitosa)

Present on fewer plots in 1919 than in 1877, traces occurring only on Plot 5^{1}, 8, 10, 18 and 19. It was recorded on Plots 5^{1} and 18 (heavy lime) In 1946, but has since apparently disappeared.

ALOPECURUS PRATENSIS Fig. 13.
Usually occurs in samples from every plot, limed and unlimed. It respusians readily to a plentiful supply of nutrients provided sufficient lime is applied. It requires abundant nitrogen and thrives on the unlimed areas of plots receiving sodium nitrate but requires lime before it can take advantage of nitrogen supplied as ammonium sulphate.

UNLIMED

QUANTITY

Large	(usually well over 10 percent)	
Plots	5^{2}	Minerals after ammonium salts till 1897
	13	F.Y.M. and fish guano alternately
	14, 15	Minerals with and without nitrate of soda (high N)
	17	Nitrate of soda
	19, 20	F.Y.M. with and without minerals and nitrate of sod

Medium (1 to 9 percent)
Plots $3 \quad$ Unmanured
7 Minerals

18 Ammonium salts and minerals without super
Small (usually under 1 percent)
Plots 1, 4^{2}, 9, 10 Armonium salts with and without minerals $5^{1} \quad$ Umanured
8 Minerals without potash
$11^{1}, 11^{2} \quad$ Minerals and heavy oramium salts

Alopecurus pratensis encouraged by:-
(a) Nitrate of soda, whether alone or with minerals
(b) Minerals alone or after ammonium salts
(c) Organic manures

Alopecurus pratensis not encouraged by:-
(a) Starved soils
(b) Most incomplete manures
(c) Heavy dressings of ammonium salts

LITMED

qUaNTITT

Greatly inoreased

Plots 4^{2}

$$
\text { 9. } 10,11^{1}, 11^{2}
$$

Super and ammonium salts
Minerals with and without potash,
and ammonium salts

Increased

Plot 1

Decreased
Plota 13
14

17
20

Ammonium salts
F.Y.M. and fish guano alternately

Minerals and nitrate of sode
(high N)
Nitrate of soda
F.Y.M., minerals and nitrate of soda

On plots with highly acid soil and a good supply of plant nutriente, liming has caused a very great increase in Alopecurus pratensis e.g. 0.8 to 31.8; 1.1 to 78.9; and 0.2 to 32.5 peroent on Plots $9,11^{1}$ and 4^{2} respectively in 1947.

On plots with slightly acid soil, liming has usually had little or no effect on the relative quentity, irrespective of the level of nutrient supply.

Plots with Alopecurus pratensis among the three chief grasses

		nlimed	
	First	Seoond	Third
1914	15,16,17	13,14,19,20	10,11 ${ }^{2}, 11^{1}$
1919	13,14,15,16,17,19,20	$5^{2} \cdot 11^{2}$	10, 18
$\begin{gathered} 1948 \text { or } \\ 1949 \end{gathered}$	$11^{1}, 11^{2}, 13,15,16,20$	$5^{2}, 6,7,14,17$	2, 3, 12
		Limed	
	First	Second	Third
1914	$4^{2}, 10,11^{2}$	$9.11^{1}, 13.16$	-
1919	$4^{2}, 10,11^{1}, 11^{2}, 13,16$	7,8	-
$\begin{gathered} 1948 \text { or } \\ 1949 \end{gathered}$	$9,11^{1}, 11^{2}, 19,20$	3. $4^{2} \cdot 10$	13, 15

$$
-95-
$$

Alopecurus pratensis in Plant Communities

URLIMED

(a)

Heavy nitrogenous and mineral manures (Plot 14), not too acid. Alopecurus - Arrhenatherum with Dactylis. Comparatively few Leguminous or Miscellaneous plants.
(b)

Less but Pairly heavy manuring (Plots $15,16,17,19,20$). Alopecurus with Dactylis - Festuca rubra - Arrhenatherum and less generally Agrostis and Anthoxanthum. Lathyrus and Plantago usually well represented.
(a) Organic mamures (Plot 13). Alopecurus with Agrostis - Dactylis Anthoxanthum - Featuca rubra - Holous - Plantago- Rumex and Aohillea. Leguminosae unimportant.

LIMED

(a)

Minerals only (Plot 7). Alopecurus - Arrhenatherum - Dactylis with Bromus in some years.
(b)

Superphosphate and ammonium salts (Plot 4 ${ }^{2}$). Alopecurus - Festuoa rubra - Poa pratensis, but the two latter may take a subordinate place in some seasons.
(0)

Heavy nitrogenous and mineral manures :-(Plot 9) Alopecurus Anthoxanthum - Arrhenatherum - Dactylis; (Plot 10)Alopocurus - Festuca rubra Arrhenatherum - Rumex; (Plot 11^{\dagger})Alopeourus with oocasional other grasses; (Plot 11^{2}) Alopecurus - Arrhenatherum with oocasional Dactylis und Poa pratensis.
(d) Organio manures (Plot 23). Arrhenatherum - Dactylis - Alopeourus with much Lathyrus and Plantago in some years.
N.B. The Alopecurus associations are more varies on the limed than on the unlimed plots, and Agrostis rulgaris is no longer a ohief oomponent.

Occurs to some extent in samples from every plot. It flourishes best on well manured and acid soil, and is usually reduced by lime.

UNLIMED

QUANTITY

Large and very variable (10 to 52 per cent)
Plot 10 Minerals without potash and ammonium salts

Fairly large and very variable (usually over 10 percent)

Plots $\quad 4^{2}$	
	5^{1}

Super
Unmanured after ammonium salta till 2897

Small (usually under 8 percent)

Plots 2. 3.12
5^{2}
7. 8, 9

13
17
18
19, 20

Unmanured
Minerals after ammonium salts till 1897
Minerals with and without amonium salts
F.Y.M. and fish guano alternately

Nitrate of soda
Minerals without super and ammonium salts
F.Y.M. with and without nitrate of goda and minerals

Very small (usually under 1 percent)
Plots 1 Ammonium alte $11^{1}, 11^{2}, 14$

Minerals and heavy nitrogenous manuring

Anthoxanthum odoratum encouraged by:"
Ammonium salts with minerals, except when nitrogen very high.

Anthoxanthum odoratum not encouraged by:-
(a) Ammonium salts alone
(b) Heavy nitrogenous manures and minerals

Other manurial treatments have little effect.
-97-

LIMED

QUANTITY

Constderably deoreased

Plots 4^{2}	Super and ammonium salts
10	Minerals without potash and ammonium salts
13,19	F.Y.M. with and without fish guano alternately
15	Minerals
17	Nitrate of soda

Plots with Anthoxanthum odoratum among the three chief grasses.

	Unlimed			Limed		
	First	Second	Third	First	Second	Third
1914	9, 10	-	1, $4^{2}, 5^{2}$	-	10	9
1919	-	$5^{1}, 10$	2, 12	-	-	-
1948 or 1949		-	10,19	-	-	10

Anthoxanthum odoratum in Plant Communities

UNLIMED
(a) Unmanured (Plots 2, 3, 12) and nitrate of soda (Plot 17). Associations very mixed, with Anthoxanthum in variable proportion.
(b) Unmanured after ammonium salts (Plot 5^{1}); Festuca rubra Agrostis - Anthoxanthum - Dactylis - Rumex - Centaurea - Conopodium.
(o) Ammonium salts with superphosphate (Plot 4^{2}); Agrostis - Festuca rubra - Holcus - Anthoxanthum - Rumex.
(d) Ammonium salts and minerals without potash (Plot 10); Anthoxanthum - Agrostis - Holcus with some Arrhenatherum.
(e) F.Y.M. and fish guano; (Plot 13) Alopecurus - Agrostis Anthoxanthum with Dactylis - Festuca - Plantago - Rumex and Achillea. LIMED
(a) Ammonium salts (Plot 1); Avena pubescens - Dactylis with Anthoxanthum - Festuca rubra.
-98-

Contd.
(a) Ammonium salts with super (Plot 4^{2}); Alopecurus - Festuca rubra with Poa pratensis and Anthoxanthum.
(b) Ammonium salts and minerals with and without potash (Plots 9 and 10); Alopecurus - Anthoxanthum with Arrhenatherum and Dactylis on Flot 9 and Alopecurus - Festuca rubra - Arrhenatherum with Anthoxanthum on Plot 10 .

ARRHENATHERUM AVENACEUM (A. elatius) Fig. 15.

Generally occurs in samples from every plot, limed and unlimed. It
thrives best on plots receiving heavy complete manures, whether as organyc or artificial fertilizers. Elsewhere comparatively little is present. The effect of lime is very variable and large increases or decreases may occur on the same plot in different seasons.

UNLIMED

QUANTITTY

[^0]Very small (under 1 percent)

```
Plots 2, 3 Unmanured
    1 Armonium salts
    9, 11', 112, 18 Ammonium salts and minerals with and
    without super
    17 Nitrate of soda
```

Probably absent
Plot $4^{2} \quad$ Super and ammonium salts

Arrhenatherum avenaceum encouraged by:-
(a) Nitrogenous dressings with minerals; if N as amonium salts till 1919 only
(b) Minerals with and without potash
(c) Organic manures

Arrhenatherum avenaceum not encouraged by:-
(a) Nitrogenous manures alone, or since 1919, heavy ammonium salts with minerals
(b) Starved soils
(c) Most incomplete manures

LIMED

QUANTITY

Usually increased

Plots 1, 9	Anmonium salts with and without minerals
7	Minerals
$11^{1}, 18$	Ammonium salts and minerals with and without super
13, 19 HL	F.Y.M. with and without fish guano
14, 20	Minerals and nitrate of soda with and without F.Y.M.
Effect varies with season	
Plots 8, 15	Minerals
10	Ammonium salts and minerals without potash
11^{2}	Heavy ammonium salts with minerals and silicate of soda
Little affected	
Plots 3	Unmanured
4^{2}	Super and ammonium salts
17	Nitrate of soda

$$
-100-
$$

on heavily manured plots			
Plot	1914	1919	1948 or 1949
9	Increase (8-39)	No effect	Increase (0.6-14)
10	Increase (5-9)	Decrease (26-8)	LiAttle change (5 -
11^{1}	Increase (7-21)	Decrease (31-16)	Increase (0.0-2)
11^{2}	Increase (21-26)	Decrease (46-16)	Increase (0.8-17)

Plots with Arrhenatherum avenaceum among the three chief grasses

Unlimed

	First	Second	Third
1914	13,14	$11^{1}, 11^{2}$	-
1919	$9,10,11^{2}$	$8,11^{1}, 13,14$	19
1948 or 1949	8,14	$4^{1}, 16,20$	$9,11^{2}(1$ percent $)$

Limed

First
1914 9, 13
1919 8,9
1948 or $8,13,14^{*}, 15,16,20$

Second	Third
$11^{1}, 11^{2}$	
$10,11^{1}, 11^{2} \cdot 13$	-
$10,18,19$	7

* Both Sun and Shade

Arrhenatherum avenaceum in Plant Communities

UNLITED
(a) Minerals without potash (Flot 8); Festuca rubra - Arrhenatherum Holcus - Trifolium pratense - Elantago.
(b) Heavy nitrogenous manures and minerals.

```
Ammonium salts with and without silicate of soda (Flotia \(11^{1}\) and \(11^{2}\) ); formerly an important constituent of the association on both plots but now inconspicuous.
Nitrate of soda (Flot 14); Arrhenatherum - Alopecurus Dactylis.
```

(c) Organic manures.
F.Y.M. alone (Plot 19) ; Alopecurus - Arrhenatherum Anthoxanthum - Agrostis - Lathyrus - Plantago.

```
-101-
F.Y.M. and minerals (Plot 20); Alopecurus - Arrhenatherum Dactylis - Lathyrus - Rumex.
```

LIMED
(a) Minerals with and without potash.

With potash (Plot 7); Alopecurus - Arrhenatherum Dactylis - Lathyrus - Heracleum.

Without potash (Plot 8) ; Arrhenatherum Avena pubescens - Lotus - Plantago.
(b) Nitrogenous manures and minerals.

Ammonium salts (Plots 9 and 11^{2}) Alopecurus Arrhenatherum - with or without much Dactylis.

Nitrate of soda (Plot 14); Arrhenatherum Festuca rubra - with Alopecurus, Lathyrus and Dactylis (Sun), Avena pubescens (Shade).
(c) Nitrogenous manures and minerals without super (Plot 18); Arrhenatherum - Dactylis - Festuca rubra - Taraxacum; with light lime Centaurea and Plantago also.
(d) Organic manures.
F.Y.M. and fish guano (Flot 13); Dactylis Arrhenatherum - Alopecurus - Lathyrus - Plantago.
F.Y.M. with and without minerals and nitrate of soda (Plots 19 and 20); Arrhenatherum - Alopecurus with Dactylis - Lathyrus - Plantago, and Ranunculus on Flot 19 .

AVENA FLAVESCENS (Trisetum flavescens)

UNLIMED

QUANTITY

Small (1.5-4 percent)
Plots 17 Nitrate of soda
19, 20 F.Y.M. with and without minerals
Very small (under 1 percent)

Plots	$2,3,12$	Unmanured
	$6,7,8,15,16$	Minerals alone or with nitrate of soda (low \mathbb{N})

-102-

Absent

Plots 1, $4^{2}, 9,10,11{ }^{1}$	Ammonium salts with and without minerals
$11^{2}, 18$	
$5^{3} \cdot 5^{2}$	Unmamured or minerals after amonium salts till 1897
23	F.Y.M. and fish guano alternately
14	Minerals and nitrate of soda (high N)

LIMED
Slightly inoreased in some seasons on Plots 1, 3, 7, 8, 14 (shade), 17 and 19, otherwise little effeot.

Avena flavescens in Plant Communities
A very insignificant member of all the assooiations in which it ocours, except ocoasionally on the limed sections of plots receiving F.Y.M.

AVENA PUBESCENS (Helictotrichon pubescens) Fig. 16.

Generally distributed over the whole area, but is very intolerant of amonium salts and is entirely absent from a few plots, and present in such small quantities on others that it does not appear in the hay samples. It is much less plentiful on the unlimed areas than it was before 1919 and may be considerably increased by lime, even to the extent of becoming one of the thee chief grass species. On the limed section of Plot 14 it is particularly abundant in the part shaded by a tree, little occurring in the sun.

UNLIMED

QUANTITX

Medium (usually 1 to 6 percent)

Plots $2,3,12$	Unmamured
4^{1},	Super
5^{2},	Minerals after ammonium salts till 1897
$6,7,8,15$	Minerals with and without potash
16,17	Nitrate of soda with and without minerals

-103-

Very small (not usually over 1 percent)
Plots 14 Minerals and nitrate of soda (high N) 19
F.Y.M. after minerals and nitrate of soda

Almost or ontirely absent
Plots 1 Ammonium salts
4^{2}
9. 10, $11^{1}, 11^{2}$

Super and anmonium salts

13
Minerale and ammonium salts

18
F.Y.M. and fish guano alternately

Minerals without super, and ammonium salts

Avena pubescens encouraged by:-

(a) Minerala, especially superphosphate
(b) Nitrate of soda, alone or with minerals

Avena pubescens not encouraged by:-
(a) Amonium salts, alone or with minerala
(b) Frequent dressings of or ganic manures

LIMED

QUAMITTY

Greatly increased

Plots 1* Ammonium salts
2, 3 Unmanured
$4^{1} \quad$ Super
15 Mineral ${ }_{B}$
16, 17 Nitrate of soda with and without minerals

Inoreased
Plots 7, 8 Minerals with and without potash
14, 20 Minerals and nitrate of soda with and without F.Y.M.
19 (HL) F.Y.M. after minerals and nitrate of soda

Little or unaffected
Plots $4^{2}, 9,10,11^{1}, 11^{2}, 13,18,19$ (LL)

* Avena pubesoens is negligible on the unlimed part of this plot.
$-104-$

Avena pubescens in Flant Communities

UNLIMED
A rather insignificant member of various mixed associations.

LINED
(a)

Ammonium salts (Plot 1); Avena pubescens - Dactylis Festuca rubra - sometimes with Plantago.
(b) Unmanured (Plots 2, 3); Avena pubescens - Lotus with Festuca rubra - Dactylis - Trifolium pratense - Plantago - Leontodon and on Plot 3 also Alopecurus - Briza - Poterium.
(c) pratense - Lotus - Lathyrus with Leontodon - Plantago - and sometimes Ranunculus spp.
(i) Minerals and nitrate of soda (Plot 16); Arrhenatherum Alopecurus - Avena pubescens - Dactylis - Lotus - Lathyrus - Trifolium pratense: sometimes with Bromus - Anthriscus - Ranunculus spp.
(e) Minerals alone (Plot 15); Arrhenatherum - Avena pubescens Trifolium pratense - T.repens - Lathyrus with Plantago.
(f) Nitrate of soda (Plot 17); Avena pubescens - Dactylis Festuca rubra - Flantago - Ranunculus and sometimes Leontodon autumnalis.

Plots with Avena pubescens among the three chief grasses

-105-

BRIZA MEDIA

Present on a few plots only. It is generally an indicator of poverty or exhaustion of soil, and disappears when conditions are improved. It is usually inoreased by lime.

UNLIMED

QUANTITY

Small ($1.0-6$ percent)
Plots 2, 3, 1
Unmanured
Super
Minerals without potash
Nitrate of soda

Absent
Plots $1,4^{2}, 5^{1}, 5^{2}, 6,7,9,10,11^{1}, 11^{2}, 13,14,15,16,18,19,20$.

Priza media encouraged by:-
(a) Starved or exhausted soils
(b) Nitrate of soda alone

Briza media not encouraged by:-
(a) Fair or good manuring of every kind
(b) Ammonium salts alone
(c) Complete minerals alone

> LTMED

QUANTITY

Increased

Plots	2,3	Unmanured
4^{1}	Super	
8	Minerals without potash	

Briza media in Plant Communities

A constituent of the very varied association characteristio of the poorer soils, but is only conspicuous at flowering time. It does not appear to be specially associated with any particular species or group of species, except Plantago and Leontodon.
-106-

BROMUS MOLLIS

Occurs on a few plots only. Quantity extremely variable with season, but has on the whole become less plentiful.

UNLIMED

QUANTITY

Small (usually under 1 percent)

Plots 6, 7, 15
14, 16
20

Minerals with potash
Nitrate of soda with minerals
F.Y.M. With minerals and nitrate of soda (plentifulvin 1943 and 1944).

Traces only

Plots 4^{1}
8
13. 19

17

Super
Minerals without potash
F. Y.M. With and without ifsh guano

Nitrate of aoda

Absent

Plots 1, 2, 3, $4^{2}, 5^{1}, 5^{2}, 9,10,11^{1}, 11^{2}, 12,18$. Traces on Plot 12 in 1940.

Bromus mollis encouraged by:-
(a) Nitrate of soda and minerals with and without F.Y.M.

Bramus mollis not encouraged by:-
(a) Starved soils
(b) Ammonium salts with and without minerals

LIMED

QUANTITY

Inoreased
Plots 7, 14, 16 19

Minerals with and without nitrate of soda
F.Y.M. after minerals and nitrate of soda

Brcmus mollis in Plant Commities
Bromus shows a specially close connection with certain Leguminosae and Miacellaneous species, notably Lathyrus.
-107-

```
(a) Minerals, limed or unlimed (Plots 7, 15); Bromus - Lathyrus - Irifolium
    pratense - Torepens - Centaurea - Achillea - Plantago.
(b) Minerals anid nitrate of soda, limed or unlimed (Plots 14,16);
    Bromus - Lathyrus - Anthriscus - Ranunculus spp., Plantago - Taraxacum - Rumex.
```


GYNOSURUS CRISTATUS

Traces oocur on a fell plote. Both distribution and quantity remained comparatively unchanged till 1919, since when a gradual deorease has taken place.

DACTYLIS GLOMERATA

Ooours in ssmples on practically every plot, limed and unlimed. It is plentiful with most dypes of manuring except those induoing very acid or starved conditions. It is not greatly affeoted by liming except where soil acidity is higho

UNIIMED

gUANT ITY

Fairly large (8-25 percent)

Plots $6,7,8,15$	Minerals with and without potash
13	P.Y.M. and fish guano alternately
14,16	Minerals and nitrate of soda
17	Nitrate of soda
20	F.Y.M. , minerals and nitrate of soda

Small, but variable (usually under 5 percent)
Plots 1 Ammonium salt 1
2. 3. 12 Unmanured
4^{1} Super
$5^{2} \cdot 5^{2} \quad$ Unmanured or minerals after amonium salts till 1897

19
F. Y.M. after minerale and nitrate of soda
-108-

Very small (usually under 1 percent)

Plote 4^{2}
9. 10
$11^{1}, 11^{2}$

18*

Ammonium salts and super
Armonium salts and minerals with and without potash
Heavy amonium salts and minerals with and without eilicate

Ammonium salts and minerals without super

Dactylis glomerata encouraged by:-
(a) Minerals with and whthout potash
(b) Nitrate of soda with and without minerals
(o) F.Y.M. with and without minerals and nitrate of soda

Dactylis glomerata disoouraged by:-

(a) Starved soils
(b) Ammonium salts with or without minerals (oomplete or partial)

LIMED

QUANT ITT

Considerably inoreased

Plots 1,9	Ammonium salts with and without minerals	
13	F.Y.M. and fish guano alternately	
18	Ammonium salts and minerals without super	
	$11^{1}, 11^{2}$	Heavy ammonium salts and minerals with and
		without silicate

Little ohanged

Plota 3

7. 8

Unmanured
Minerals with and without potash

Slightly deoreased

Plota 14 Minerals and nitrate of soda (high N, shaded area)

15
17 Nitrate of soda

Plots with Dactylis glomerata among the three chief grasses

19146 7.16, $68 \quad$ 5\% 14, 19
2,6,7,12,18 $\quad 3,16,19,20 \quad 5^{1}, 17$

1948 or $19496,7,17$
8, 12, $15 \quad 1,41,5^{1}, 13,14,16,18,20$

* Large amounts of Dactylis glomerata occurred on this plot till 1919 but in 1948 only t.racas wera left.

Ocours in samples from every plot, limed and unlimed. It is generally plentiful except where the manuring is very heavy and it is much affected by season. The response to lime varies considerably.

UNLIMED

QUANTITY

Large (ofter over 40 percent)

Plot	5^{1}	Unmanured after ammonium salts till 1897
Very variable with season		(mostly up to 20 percent)
Plots	1	Ammonium salts
	2. 3, 12	Unmanured
	$4^{1} \cdot 4^{2}$	Super with and without ammonium salts
	5^{2}	Minerals after ammonium salts till 1897
	7. 8	Minerals with and without potash
Small (up to 11 percent)		
Plote	6, 15	Minerals
	10	Ammonium salts and minerals without potash
	13	F.Y.M. and fish guano alternately
	16, 17	Nitrate of soda with and without minerals
	18	Ammonium salts and minerals without super
	19, 20	F. Y.M. with or without minerals and nitrate of soda

Very simall (under 1 peroent)
Plots 9 Ammonium salts and minerals
$11^{1}, 11^{2} \quad$ Heavy ammonium salts and minerals with and without silicate
14 Heavy nitrate of soda and minerals

Pestuoa rubra enoouraged by:-
(a) Starved soils
(b) Minerals and light dressings of amonium salts singly or in combination
(c) Organic manures

* The Restuca ovine of the early records of J.B. Lawes and J.H. Gilbert and later of W.E. Brenchley, now identified by Mr. C.E. Hubbard of the Herbarium, Kew as forubra.

Festuca rubra not encouraged by:-
(a) Minerals and heavy dressings of nitrate of soda or amonium salts

LIMED

QUANTITT

Considerably increased

Decreased

Plots	1	Ammonium salts
3	Unmanured	
$7,8,15$	Minerals with and without potash	
13	F. Y.M. and fish guano alternately	

Little affected

Plots $11^{1}, 11^{2}$	Ammionium salta andminerals with and without
silicate	

Plots with Festuca rubra as the ohlef grass

	Unlimed	Limed	
1914	$1,2,3,4^{1}, 4^{2}, 7,8,18,19,20$	$1,2,3,4^{1}, 8,16$	$5^{1}, 5^{2}, 12$
19194^{2}	-	$5^{1}, 5^{2}$	
1949	$2,3,4^{1}$	$4^{2}, 10,17$	$5^{1}, 5^{2}, 12$

Festuca rubra in Plant Communities UNLSMED

A prominent feature of many plant associstions. Festuca - Agrostis Anthoxanthum is characteristic of Plots 4^{2} (Ammonium salts and super) and 5^{1} (Unmanured after Ammonitur salts).

Its ocourrence appears to bear little relation to the general balance of the three main groups of herbage, as it may be dominant where Gramineae, Leguminosae and Misoellaneous plants are well represented, and also where one or both of the latter groups are nearly or entirely suppressed.

LTMED
Assooiation very varied as on the unlimed and dominanoe is affected by season. Ammonivm salts and super (Plot 4^{2}) Festuca - Alopecurus - Poa pratensis.

FESTUCA PRATENSIS

Rarely aeen on any plot and has decreased oonaiderably both in distribution and quantity. At one time it was more plentiful on the limed sections, especially of Plots 7, 8 and also Plot 19 (HL).

HOLCUS LANATUS Fig. 18.

Ocours in samples from every plot, limed and unlimed. It is ubually kept In oheck by its associates, but it tends to dominate the aituation when oonditions are less favourable to the other species. High nutrition, assooiated with soil acidity, gives it great encouragement.

UNLTMED

QUANTITY

Very large (up to 100 percent)
Plots 9. $11^{1} \quad$ Ammonium salts and minerals

Variable (mostly 20-74 percent)

Plota	10
11^{2}	Ammonium salts and minerals without potash
Ammonium salts and minerals with silicate	

Small (mostly under 10 percent)

Plots 2, 3, 12
$4^{1}, 4^{2}$
$5^{1} \cdot 5^{2}$
6, 16
7. 8, 15

13
17
18
19. 20

Unmanured
Super with and without ammonium salts
Unmanured or minerals after ammonium salts till 1897
Minerals with and without nitrate of soda
Minerals with and without potash (low N)
F.Y.M. and fish guano alternately

Nitrate of soda
Minerals without super and ammonium salts
F.Y.M. with and without minerals and nitrate of soda

Almoat or enitrely absent

```
Plots 1 Ammonium salts
    14
```

Holous lanatus encouraged by:-
(a) Heavy dressings of ammonium salts and minerals
(b) Nitrate of soda alone
(o) Omisaion of potash

Holcus lanatus not encouraged by:-
(a) Starved soils
(b) Mineral manures, alone or in combination with nitrogenous fertilizer other than heavy dressings of ammonium salts

Suppressed by:-

(a) Ammonium salts alone
(b) Heavy nitrate of soda and aminerals

LIMED

QUANTITY

Inoreased

Plot 1 Ammonium salts

Deoreased

Plote 7. 8
19 (HL)

Minerals with and without potash
F.Y.M. after minerals and nitrate of soda

Considerably deoreased

Plots 9,10	
$11^{1}, 11^{2}$	Minerals and amonium salts
17	Minerals and heavy ammonium salts with
and without silioate	

Little or variably affeoted
Plots 2, 3, $4^{1}, 4^{2}, 13,14,15,16,18,19 \mathrm{LL}, 20$.

Plots with Holous lanatus amone the three ohief prasses

	Unlimed			Limed		
	First	Second	Third	First	Second	Third
1914	$11^{1}, 11^{2}$	8	$4^{1}, 13,20$	11^{1}	-	2, $4^{1}, 13$
1919	1,2,3,8,21 ${ }^{1}$	9,17	$4^{1} \cdot 11^{2}$,	-	4^{1}	1, 2, 3, 11^{1}
$\begin{gathered} 1948 \text { or } \\ 1949 \end{gathered}$	9. $11^{1} \cdot 11^{2}$	10	$4^{2} \cdot 8$	-	-	$4^{1}, 11^{1}$

On plots with highly acid soils and a good supply of plant nutrients, liming has caused a very great decrease in Holous lanatus viz. 90.6-2.5 percent (Plot 9, 1948) and 81.7-7.6 and 40.8-2.4 percent (Plots 11^{1} and 11^{2} respectively, 1947). The effect of lime on plots of medium or low acidity is much smaller.

Holcus lanatus in Plant Comminities

UNLIMED
(a) Ammonium salts and minerals (Plots 9, 10); Helous - Anthaxanthum Agrostis with the latter two usually almost absent on Plot 9.
(b) Heavy ammonium salts and minerals (Plots $11^{1}, 11^{2}$); Holous - Agrostis with Arrhenatherum also on Pplot 11^{2}

The other associations in which Holous occurs are both very varied in composition, and also influenced by season.

LIMED
Most of the associations are varied and variable, even on Plots 11^{1} and 11^{2} where Holcus, usually plentiful, may be greatly reduced in some seasons.

-115-

LOLIUM PERENNE

Very small amounts often occur on Plots 8, 17 and 20 although formerly this species was found on most plots in fair quantity.

POA PRATENSIS Fig. 19.
Present on most plots and is tenacious of its position in spite of the very small amounte that usually occur. It is not much affected by manuring, but is considerably increased by lime.

UNLIMED

QUANT IT I

Small (up to 6 percent)
Plots $5^{2} \quad$ Minerals after ammonium salta till 1897
7. 14, 15 Minerals with and without heavy nitrate of soda

Very small (usually under 1 per cent)
All other plots, but usually absent on Plots 9 and 10 .

LIMED

QUANTITY

Much increased
Plots 4^{2}
Super and ammonium salts
9, 10
Armonium salts and minerals with and without potash
$11^{1}, 11^{2}$
Heavy ammonium salts and minerals with and without silicate

Increased
Plots 1
Ammonium aalta
2, 3
Unmanured
13
F.I.M. and fish guano alternately

Little affected
Plots $4^{1}, 7,8,14,15,16,17,18,19,20$.

Poa pratensis in Plant Communitiea
UNLIMED
An insignificant member of all associations except occasionally on Plot 14
where it may be quite prominent.

LIMED

Insignificant except on the following plots:-
(a) Super and armonium salts (Plot 4^{2}); Alopecurus - Festuca rubra Poa pratensis - Anthoxanthum.
-116-
(b) Minerals and armonium salts (Plots 9, 10); Alopecurus - Arrhenatherum Poa pratensis with Anthoxanthum and Dactylis (Plot 9) or Festuca rubra (Plot 10).
(c) Minerals and heavy armonium salts (Plots 11 ${ }^{1}, 11^{2}$); Alopecurus Poa pratensis - with Arrhenatherum, Dactylis and Holcus.

POA TRIVIALIS

UNLIMED
Present in very small amounts.

QUANTITY

Small (usually under 1 percent)
Plots 14. 16 Minerals and nitrate of soda (9.8 percent on Plot 14 in 1940)

Very small (under 0.9 percent)

Plots 4^{1}
$6,7,8,15$
13
17
19. 20

Super
Minerals with and without potash
F.Y.M. and fish guano alternately Nitrate of soda
F.Y.M. with and without nitrate of soda and minerals

Almost or entirely absent
Plots 1, 2, 3, $4^{2}, 5^{1}, 5^{2}, 9,10,11^{1}, 11^{2}, 18$.

LIMED

QUANTITY

Increased (sometimes considerably)
Plot 7 Minerals

Increased

Plot	1	Ammonium salts
	2, 3	Unmanured
	8, 15	Minerals without and with potash
	13, 19, 20	F.Y.M. with and without minerals and nitrate of soda
	14(sun), 16	Nitrate of soda and minerals
	17	Hitrate of soda

-117-

Little or unaffeoted
Plots $4^{1}, 4^{2}, 9,10,11^{1}, 11^{2}, 18$.

Even where liming causes a considerable increase, the amount may remain very small.

Poa trivialis in Plant Communities

Formerly an insignificant member of all associations in which it occurred, but now of some importance on the limed sections.
B. LEGUMINOSAE

LATHYRUS PRATENSIS

Abundant on certain plots, particularly those receiving mineral manures. On most other plots very little is present. The effect of lime varies with the manuring.

UNITMED

QUANTITY

Sometimes large (up to 34 percent)

Plots 6, 7, 15	Minerals
5^{2}	
16	Minerals after ammonium salts till 1897
Medium (up to 13 percent)	
Plots 14	Minerals and nitrate of soda (low N) 19,20
	F.Y.M. with and without minerals and nitrate
of soda	

Very small

| Plots $2,3,12$ | Unmanured |
| ---: | :--- | :--- |
| 4^{i} | Super |
| 8 | Minerals without potash |
| 13 | F.Y.M. and fish guano alternately |

Almost or entirely absent

Plots $1,4^{2}, 5^{1}, 9,10,11^{1}, 11^{2}, 17,18$.

-118-

Lathyrus pratensis encour aged by:-
(a) Minerals, alone or with nitrate of soda
(b) Occasional dressings of organic manures

Lathyrus pratensis not encouraged by:-
(a) Starved soils
(b) Amonium salts alone or with minerals
(c) Nitrate of soda alone

LIMED

QUANTITY

Considerably increased

Plots 1. 9 Ammonium salts with and without minerals
13
14

Slightly inoreased

Plots 2, 3	Unmanured	
	4^{i}	Super

Decreased

```
Plots 7
Minerals
    16 Minerals and nitrate of soda (low N)
```


Little affected

Plots $4^{2}, 8,10,11^{1}, 11^{2}, 15,17,18,19,20$.

Plots with Lathyrus pratensis among the three chief species of the whole herbage.

	Unlimed			Limed		
	First	Second	Third	Firat	Second	Third
1914	15	6,7,16	-	7	-	4^{1}
1919	-	-	6,7	7	-	-
1948 or	$5^{2}, 6,15,19$	-	16, 7	7	15	-

Lathyrus pratensia in Plant Communities
UNLIMED
(a) Complete minerals or occasional dressings of arganic manure. (Plots $5^{2}, 6,7,15,19,20$) Festuca rubra - Lathyrus - Dactylis - Agrostis, often with Anthoxanthum - Arrhenatherum - Holcus - Alopeourus.
(b)
-119-
Minerals and nitrate of soda (Plots 14, 16); Lathyrus - Alopecurus Arrhenatherum - Dactylis with Taraxacum - Plantago and occasionally Anthriscus.

LIMED
(a) Minerals with and without armonium salts (Plots 7, 9); Daotylis Alopecurus - Arrhenatherum - Lathyrus, with Trifolium repens on Plot 7 and Anthoxanthum on Plot 9 .
(b)
F.Y.M. and Pish guano (Plot 13); Alopeourus- Arrhenatherum - Daotylis Lathyrus - Plantago.
(o) Minerais and heavy nitrate of soda (Plot 14); Arrhenatherum Alopecurus - Daotylis - Lathyrus.
(d)

Minerals alone (Plot 15); Arrhenatherum - Avena pubescens - Festuea rubra - Lathyrus with Trifolium repens - Plantago。

LOTUS CORNICULATUS

Low growing and usually late flowering, so is probably more abundant than appears from the hay analyses. It was partioularly noticeable in August 1921 after the prolonged drought, and in June 1929, 1930, 1934, 1939 and 1945.

UNL IMED

QUANTITY

Large (up to 9 percent)
Plots 2, 3. 12 Unmanured
Medium (up to 5 percent)
Plots 4^{1}
$5^{1} \cdot 5^{2}$
Super
Unmanured or minerals after amonium salts till 1897
6.7. 8

Minerals with and without potash
29.
F.Y.M. after minerals and nitrate of soda

> -120

Almost or entirely absent
Plots $1,4^{2}, 9,10,11^{1}, 11^{2}, 13,14,15,16,17,18,20$.
Latue corniculatus encouraged by:-
(a) Starved soils
(b) Minerals

Lotus corniculatus usually suppressed by:-
(a) Nitrogenous manures with minerals
(b) Frequent organio manuring

LIMED

QUANTITY

Considerably increased

Plots 3
4^{1}

8
17

Unmamured
Super
Minerals without potash
Nitrate of soda

Increased

Plots 1
Ammonium salts
19 (HL)
F.Y.M. after minerals and nitrate of soda

Deoreased
Plot 7 Minerals

Lotus corniculatus in Plant Communities

Not usually a significant species, exoept in the very mixed associations on the plots receiving no manure or incomplete minerals.

ONONIS ARVENSIS (0. repens).

Ocours in small quantity on Plot 4^{l} Unlimed (Super).

TRI POLIUM PRATENSE

Owing to its low growth, it does not always appear in representative quantity In the hay samples, especially when the season is unfavourable.
-121-

UNLTMED

gIUANITTY

Often large (up to 18 percent)
Plots 6,7,8 Minersals with and without potash

Medium
Plots 2, 3, 1
Unmanur ed

Small
Plots 4^{1}
Super
5^{2}
15. 16

Minerals after amonium salts till 1897
Minerals with and without nitrate of soda

Trace or absent
Plots 1, $4^{2}, 5^{2}, 9,10,11^{2}, 13,14,17,18,19,20$ 。

Trifolium pratense encouraged by:-
(a) Minerals
(b) Starved soils

Trifolium pratense almost or entirely suppressed by:-
(a) Ammonium salts
(b) Heavy organic manures
(c) Heavy dressings of sodium nitrate

LIMED
Effeot variable; quantity usually increased, but little changed on Plot 8 (Minerals without Potash) where it is already plentiful.

Trifolium pratense in Plant Communities

Not a significant member of any association, except on plots recelving minerals only without lime.

> UNL IMED
(a)

Complete minerals (Plots 6 and 7): Dactylis - Lathyrus - Trifolium pratense - Plantago - Rumex with Anthoxanthum and Achillea; Lotus and Conopodium in addition on Plot 6.
(b)

Minerals without potash (Plot 8); Dactylis - Arrhenatherum -
Featuca rubra - Holcus - Trifolium pratense - Plantago - Rumex.

$$
-122-
$$

TRIFOLIUM REPENS

Owing to its low growth and late development it does not appear in representative quantity in the hay samples.

UNLTMED
QUANTITY
Relatively large (up to 3.9 percent)

Plots 7, 8, 15 19

Minerals with and without potash F. Y.M. after minerals and nitrate of soda

Absent
Plots $4^{2}, 5^{1}, 9,10,11^{1}, 11^{2}, 13,14,18$.

Traces on all other plots.

LIMED

QUANTITY

Inoreased

```
Plote 7. 15
Minerals 20 (LL)
F.Y.M. with minerals and nitrate of soda
Little affeoted
All other plots.
```


VICIA SEPIUM

Occurs in small quantity on the unlimed sections of Plots 6 and 7 and occasionally on the limed area of Plot 7 .

ACHILLEA MILLEFOLIUM

UNL TMED

QUANTITY

Fairly large (up to 14 percent)
Plots 6.7.8, 15 19

Minerals with and without potash F.Y.M. after minerals and nitrate of soda

Small (up to 4 percent)
All other plots except: $-4^{2}, 9,10,11^{1}, 11^{2}$ where absent.

Aohillea millefolium encouraged by:-
(a) Minerala
(b) F.Y.M.

Achillea millefolium discouraged by:-
(a) Armonium salts

LIMED
Achillea is decreased by liming, except on Plots 1 and 17 where there is a slight inorease, and Plots $11^{1}, 19$ and 20 where no ohange oocurs.

AGRTMONIA EUPATCRIA

Has beoome more plentiful since 1919, particularly on the limed half of Plot 8 (minerals without potash). Owing to its late development little appears in the hay samples and the following data are based on field observations in Sqtember for the ten years 1940-1949.

UNLIMBD

Recorded in flower

Almost every year
Plote 2, 3, 12 Unmanured

In 3 seasons

Plots	4^{l}	Super 8
	Minerals without potash	

In 1 or 2 seasons

Plots 1

4^{2}
5^{1}
18
19

> Armonium salts
> Super and ammonium salts
> Unmamured after ammonium salts till 1897
> Ammonium salts and minerals Without super
> F. Y.M. after minerals and nitrate of soda

LIMED

Recorded in flower

Almost every year

Plote 1
2, 3
4^{1}
8

18
19

Ammonium salts
Unmanur ed
Super
Minerals without potash (usually rated plentiful)
Amonium salts and minerals without super
F. Y.M. after minerals and nitrate of soda

In 3 or 4 seasons

Plots 7
16

Minerals
Minerals and nitrate of soda

In 1 or 2 seasons
Plots 13
17
15

AJUGA REPTANS

Little appeara in the hay samples, but it is a regular feature on the plots receiving no marure ($2,3,5^{1}, 12$), nitrate of soda (17) and F.Y.M. with and without minerals ($13,19,20$) and to a less extent super (4^{1}) and minerals Without potash (8). The addition of lime has no marked influence on its distribution or quantity, except on Plot 1 (armonium salts alone) where a small amount of Ajuga is introduced.

ANTHRISCUS SYLVESTRIS

UNLINED

QUANPITY

Small (up to 5 percent)
Plote 14. 16 Nitrate of soda and minerals

Trace
Plot 20 F. Y.M., minerals and nitrate of soda

Absent
All other plots

LIMED

QUANTITI

Increased
Plota 16
13
Nitrate of soda and minerals
F.Y.M. and fish guano alternately

Introduced
Plote 7.9 Minerals with and without ammonium salts

Absent
All other plots

CARGX PRAECOX (C.caryophyllea)

UNLIMED
QUANTITY
Appreoiable (up to 1.7 percent)

Plots	3	Unmanured
	17	Nitrate of soda

Trace
Plot 8
Minerals without potash
Absent
011 other plots LIMED
Up to 0.3 percent on Plot 3 and a trace on Plot 8 otherwise absent.
-126.

CENTAUREA NIIGRA

Centaurea nigra is enoouraged by one-sided manuring whether nitrogenous or mineral but suppressed when both are applied together. Its response to lime varies.

UNL IMED

QUANTITT

Medium (up to 8 percent)
Plots $3,5^{1} \quad$ Unmanured
4

6, 7, 8
17

Super
Minerals with and without potash
Nitrate of soda

Small (under 1 percent)
Plots 1 Asinonium salts
13. 19 F.Y.M.

15 Minerals

Absent
All other plots, except for traces on Plot 10.

Centaurea nigra enoouraged by:-
(a) Starved soils
(b) Nitrogenous manures or mineral manures alone

Gentaurea nigra almost or entirely suppressed by:-
(a) Nitrogenous and mineral manures applied together
(b) Organic manures

QUANTIT Y

Increased

Plots 1
13, 19, 20

18
Decreased
Plots 7, 15
17

Ammonium galts
F.Y.M. with and without nitrate of soda and minerals
Ammonium salts and minerals without super

Minerals
Nitrate of soda

Little or unaffected
Plots 3. $4^{1}, 8,14$.
-127-
Centaurea nigra in Plant Communities
Occurs in the very mixed association of plots receiving no mamure or incamplete fertilizers. It is seldow found on well manured soils.

CERASTIUM VULGATUM

UNLILASD
Present in emall quantity on most plota, except those receiving amonium salts or nitrate of soda, with or without minerals.

LIMED
Quantity usually slightly inoreased.

CONOPODIUM DENUDATUM (C.ma.jus)

Very variable with season and has ranged from l-10 peroent. As it flowers and dies dom early it is probably more abundant than is indicated by the hay analyses.

UNLIMED
QUANTITY
Medium (usually over 5 percent)

Plots	$2,3,12$	Unmanured
6,7	Minerals	

Small (usually under 2 percent)
Plots $1,4{ }^{1}$
$5^{1} \cdot 5^{2}$
Ammonium salts with and without auper
Unmanured or minerals after armonium salte till 1897

8, 15
13
16
17
19. 20
Minerals

Minerala with and without potash
F.Y.M. and fiah guano alternately

Minerals and nitrate of soda (low N)
Nitrate of soda
F. Y.M. with and without minerals and nitrate of soda

Almost or entirely absent

Plote $4^{2}, 9,10,11^{1}, 11^{2}, 18$ Ammonium salts and minerals with and without super
14
Minerals and nitrate of soda (high \mathbb{N})

Conopodium denudatum enoouraged by:-
(a) Starved soils
(b) Minerals

Conopodium denudatum discouraged by:-
(a) Ammonium salts
(b) Heavy nitrate of soda and mineralis
-128-

LIIED

QUAMTITY

Decreased

Plots 2, 3
7. 8

13

Unmanured
Minerals with and without potash
F.Y.M. and fish guano alternately

Little affected
All other plots

Conopodium denudatum in Plant Communities

Occasionally conspicuous in the varied associations on the unmamered and mineral plots.

EPILOBIUM ANGUSTIFOLTOM (Chamaenerion angustifolium)

Appeara occasionally on the unlimed sections only*. In 1947 it was unusually plentiful on the following plots, all of which receive amonium salts.

Plot	1	Armonium salts alone	Trace	
4^{2}	$"$	$"$	$"$ and super	0.8 percent
9	$"$	$"$	and minerals	1.7
	11^{1}	$"$	$"(h e a v y) ~ a n d ~ m i n e r a l s ~$	11.9

GALIUM VERUM

Occurs in some seasons in very small quantities on most plots, except those reoeiving ammonium salts and minerals.

* The source of invasion is adjacent to the unimed sections which increases the ohance of colonization on these areas. The inhibiting effect of lime on establishment, however, appears to be real and compares with that of sodium silicate (See p. 12).
-129-

HERACLELM SPHONDYLIUM

Has greatly increased on certain plots since 1924.

UNLIMED

QUANTITY

Pairly plentiful
Plots 6,7 Minerals (up to 4 peroent on Plot 7)

Small, often absent
Plots 9, Minerals and amoonium salts; (0.4 peroent)
13. 19 F.Y.M. (1.3 peroent; Plot 13)

14
Minerals and heavy nitrate of soda; (up to 1.0 percent)

Tra00日

Plota $\quad 5^{2}, 8,10,16,17,20$.

Absent
All other plots.
LIMED

QUANTITY

Greatly increased
Plots 7.9 Minerals with and without ammonium salts

Increased
Plot 19
F.Y.M. after minerals and nitrate of soda
$I_{\text {ntroduced }}$

Plot 11^{2}	Ammonium salts, minerals and silicate of soda
15,16	Minerals with and without nitrate of soda
18	Ammonium salts and minerals without super

HIERACIUM PILOSELLA

Has become more plentiful and may be important on Plot 5^{1} (unnamured after ammonium salts till 1897). It occurs to some extent also on the following plots inoluding any limed areas:-
Plots $2,3,12$
4^{1}
5^{2}
8

8

Unmanured
Super
Minerals after ammonium salts till 1897
Minerals without potash

$$
-130-
$$

HYPOCHAERIS RADICATA

Has increased in distribution, and now oocurs to some extent on all plots exoept:-

Plots 1 Ammonium salts
4^{1}
10, $11^{1}, 11^{2}$
16

18
19. 20

Super
Ammonium salts and minerals with and without silicate
Minerals and nitrate of soda
Ammoni um salts and minerals without super
F.Y.M. with and without minerals and nitrate of soda

LEONTODON AUTUMNALIS

Late flowering, so no flgures from hay analyses are available. The followling
data are from observations made in September, 1946-1949.

UNLIMED

QUANTITY

Abundant
Plots 4^{1}
8, 15
17

Plentiful

Plota 3

16

Small
Plots

2,12	Unmanured
5^{2}	Minerals afer armonium salts till 1897
6,7	Minerals
13	F.Y.M. and fish guano alternately
14	Minerals and nitrate of soda (high N)
20	F.Y.M. minerals and nitrate of soda

Absent

All other plote.

LIMED
In general the quantity is reduced by lime.

> -131-

QUANTITX

Plentiful
Plot 17 Nitrate of soda
Small
Plots 1
Ammonium aalts
2
Unmamured
7, 8, 15
Minerala with and whout potash
10
13. 19

Armonium salts and minerals without potash

18
F.Y.M. with and without fish guano

Amnonium salts and minerals without super

LEONTODON HISPIDUS Fig. 20.

Abundant on a fow plots, but traces may occur on most others.

UNLIMED
QUANTITY
Fairly large (up to 18 percent)
Plots

2, 3, 12
4^{1}
8
17

Unmanured
Super
Minerals without potash
Nitrate of soda

Small (0.1-1.9 peroent)
Plots $5^{1} \quad$ Unmanured after ammonium salts till 1897
6. 7

Minerals
13 F.Y.M. and Pish guano alternately
19 F.Y.M. after minerals and nitrate of soda

Occasional traoes
Plots $1,5^{2}, 9,10,11^{1}, 14,18,20$.

Absent
All other plots.

Leontodon hispidus encouraged by:-
(a) Starved soils
(b) Super

Leontodon hispidus discouraged by:-
(a) Most forme of good or medium manuring

-132-

LIMED
QUANIITY
Slightly increased or little changed

Plots $\begin{array}{ll}1 \\ & 4\end{array}$ 4^{1} 13

Ammonium salts
Super
F.Y.M. and Pish guano alternately

Decreased

Plots 2,3	Unmanured	
	17	Nitrate of soda

Plots with Leontodin hispidus among the three chief species of the whole herbage.

1914

- $\quad 2,3,4^{I}$

1948 or 1949
$2,4^{1}, 3$
12

Leontodon hispidus in plant communities

UNL TMED

A characteristic of the association on the plots with no manure, super and minerals without potash (2, 3, 12, $4^{1}, 8$). Festuca rubra - Agrostis-Dactylis Holcus - Anthoxanthum - Briza, Trifolium pratense - Leontodon - Plantago - Rumer (Little or no Agrostis on Plot 4^{l} and little Briza on Plot 8).

LIMFD

Characteristic of the same plots as the unlimed areas, but in somewhat different association. viz. Dactylis - Avena pubescens - Holcus - Briza Trifolium pratense - Leontodon - Plantago - Centaurea. (Often much Poterium on Plot 3 and Scabiosa on Plot 8).

-133-
 LINUM CATHARTICUM

Rarely if ever appears in the hay samples. On the unlimed areas it occurs only on Plots 2 and 3 (unmanured), but it is a regular Peature on the limed halves of both these plots and also of Plot 4^{1} (super) and to a less extent of Plot 1 (anmonium salts).

LUZULA CAMPESTRIS

Has inoreased ainoe 1914.
UNLIMED

QUANTITY

Variable (mostly below 1 percent)
Plots 1
2, 3, 1
Ammonium salts
$5^{1} \cdot 5^{2}$
Urmanured
Unmanured or minerals after amonium salts till 1897
6, 7, '8', 15
17
Minerals with and without potash
Nitrate of soda

Traces

Plots $4^{1}, 9,11^{1}, 11^{2}, 13,18,19$.

Absent
Plots $4^{2}, 10,14,16,20$.

LIMED
Little general ohange in quantity, but decreased on Plots 7, 8 and 15.

PIMPINELLA SAXIFRAGA

Owing to its late development, very little appears in the hay samples and it is more plentiful, especially on the plots receiving no manure or minerals, than the analytical figures indicate. Probably increased by lime.

Plantago lanceolata Fig. 21.
Plantago lanceolata is chiefly associated with poor exhausted soils and may be very plentiful in some seasons. The effect of lime varies with the manuring.

$$
-134-
$$

UNLIMED

QUANTITY

Large (may reach 33 peroent)
Plots
Unmanured
Super
Minerals without potash
F.Y.M. and fish guano alternately

Nitrate of soda
F.Y.M. after minerals and nitrate of soda

Variable (up to 6.5 percent)

Plots 6,7, 15
20

Minerals
F.Y.M., minerals and nitrate of soda

Absent or occasional traces
Plots $\quad 1,4^{2}, 5^{1}, 5^{2}, 9,10,11^{1}, 11^{2}, 14,16,18$.

Plantago lanceolata encouraged by:-

(a) Starved or exhausted soils
(b) Nitrate of soda alone
(c) F.Y.M., with and without fish guano

Plantago lanoeolata almost or entirely suppressed by:-
(a) Ammonium salts with minerals
(b) Nitrate of soda with minerals
(o) Unmanured or minerals after ammonium salts

LIMED

QUANTITY

Increased
Plots 1
13
15
18
20

> Ammonium salts
> F.Y.M. and fish guano alternately
> Minerals
> Minerals without super and ammonium salts
> F.Y.Mo, minerals and nitrate of soda

Deoreased

$$
\begin{array}{lc}
\text { Plots } & 7,8 \\
& 14,
\end{array}
$$

Minerals with and without potash
Nitrate of soda and minerals

Effect variable

Plots 2,3	Unmanured	
	4^{1}	Super

$$
-135-
$$

Unaffected

Plote	17	Nitrate of soda
	19	F.Y.M. after minerals and nitrate of soda

Plantago lanceolata in plant commities

Generally characteristic of the various assooiations on the poorer soils, although it is also conspiouous on the plot receiving F. Y.M. and fish guano. It may show a connection with Briza and Leotodon hispidus.

Plots with Plantago lanceolata among the three chief species of the
Whole herbage.

	Unlimed			Limed		
	Fir st	Serond	Third	First	Second	Third
1914	-	-	8, 17	-	-	-
1919	2, 3, 4 ${ }^{1}, 8,17$	-	-	-	2. $3.4{ }^{1}$	8
$\begin{gathered} 1948 \text { or } \\ 1949 \end{gathered}$	8,13	-	4^{1}	1	3, $4^{1}, 8$	13

POTENTILLA REPTANS

Occurs occasionally. A characteristic feature of Plot 1 (ammonium salts alone).

UNLTMED
QUANTITY
Small
Plots 1
Ammonium salts (1.9 percent in 1948)
3 Unnanured (0.3 percent in 1948)

Trace
Plot 13
F. Y.M. and fish guano alternately

LIMED
Almost absent. [0.1 percent on Plot I (amonium salts) and a trace on Plot 3 (unmanured) in 1948].

$$
-136-
$$

POTERIUM SANGUISORBA

Poterium sanguisorba is usually regarded as a calcareous plant and the quantity occurring on the unlimed plots is unexpected.

UNLIMED
QUANTITY
Large clumps

Plots 2,3	Unmanured (18 percent, 1938)	
	4^{i}	Super

Traces
Plots $\quad 5^{1}, 8,10,14$.

LIMED
QUANTITY
Large clumps
$\begin{array}{lll}\text { Plots } 2,3 & \text { Unmanured (13 percent, 1947) } \\ 4^{1} & \text { Super }\end{array}$

Traces
Plots 8, 10.

PRTMULA VERIS

Seldom represented in the hay samples. UNLIMSD

QUANTITY
Present
Plots 2, 3, 12 Unmanured (especially Plot 12)

Occasional
Plot $4^{l} \quad$ Super

LIMED

Seldom recorded. Originally present on Plots 7, 8, 13, 15 and 19 but has now disappeared.

> 148
> Fig. 4.

149
Fig. 5.
è
Fig. 5. YIELD (Ib. per acre Ist crop) PLOT 5. showing effect of change in manuring in 1897
Unmanured (PLOT 5^{\prime}).-. 1898-1947 Minerals (PLOT s^{2}).

150

Fig.6.

Fig. 7.

152
Fig. 8.

153
Fig. 9.

Fig. 12.

158
Fig. 14.


```
Fig. 7. Yield (lb. per acre 1st crop) Plot 8, unlimed and limed
    8. Yield (Ib. per acre 1st crop) Plot 41, unlimed and limed
    9. Yield (lb. per acre 1st crop) Plot 16, unlimed and limed
    10. Yield (lb. per acre 1st crop) Plot 9, unlimed and limed
    11. Yield (lb. per acre 1st crop) Plot 42, unlimed and limed
    12. Percentage of Agrostis vulgaris in 1947
    13. Percentage of Alopecurus pratensis in 1947
    14. Percentage of Anthoxanthum odoratum in 1947
    15. Percentage of Arrhenatherum avenaceum in 1947
    16. Percentage of Avena pubescens in 1947
    17. Percentage of Festuca rubra in 1947
    18. Percentage of Holcus lanatus in 1947
    19. Percentage of Poa pratensis in 1947
    20. Percentage of Leontodon hispidus in 1947
    21. Percentage of Plantago lanceolata in 1947
    22. Percentage of Rumex acetosa in 1947
```

 TABLES

Number

[^0]: * Till 1919 only. No further complete botanical analyses were made till 1949 when 1.0 percent was present. According to field observations the reduction occurred about 1922.

